Math 430 Quiz 2 Version A

1. For $T \in \mathcal{L}(V, W)$ the null space of T is defined as
(A) $\operatorname{null}(T)=\{w \in W: T w=0\}$.
(B) $\operatorname{null}(T)=\{v \in V: T v=0\}$.
(C) $\operatorname{null}(T)=\{T w: w \in W\}$.
(D) $\operatorname{null}(T)=\{T v: v \in V\}$.
(E) none of these.
2. For $T \in \mathcal{L}(V, W)$ the range of T is defined as
(A) $\operatorname{range}(T)=\{w \in W: T w=0\}$.
(B) $\operatorname{range}(T)=\{v \in V: T v=0\}$.
(C) $\operatorname{range}(T)=\{T w: w \in W\}$.
(D) \quad range $(T)=\{T v: v \in V\}$.
(E) none of these.
3. Let $T \in \mathcal{L}(V, W)$ and $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V and $\left(w_{1}, \ldots, w_{m}\right)$ be a basis of W. With respect to these basis, the matrix $M(T)$ is defined as the $m \times n$ matrix with entries $a_{j, k}$ where
(A) $T v_{k}=a_{1, k} w_{1}+\cdots+a_{m, k} w_{m}$.
(B) $T v_{j}=a_{j, 1} w_{1}+\cdots+a_{j, m} w_{m}$.
(C) $w_{k}=a_{1, k} T v_{1}+\cdots+a_{n, k} T v_{n}$.
(D) $\quad w_{j}=a_{j, 1} T v_{1}+\cdots+a_{j, n} T v_{n}$.
(E) none of these.
4. Let $T \in \mathcal{L}(V)$ and U be a subspace of V. We say that U is invariant under T if
(A) for every $T u \in U$ then $u \in U$.
(B) for every $v \notin U$ then $T v \notin U$.
(C) $\left.T\right|_{U} \in \mathcal{L}(V)$.
(D) $\left.T\right|_{U} \in \mathcal{L}(U)$.
(E) none of these.
5. A scaler $\lambda \in \mathbf{F}$ is called an eigenvalue of $T \in \mathcal{L}(V)$ if
(A) there exists a vector $u \in V$ such that $T u=\lambda u$.
(B) there exists a nonzero vector $u \in V$ such that $T u=\lambda u$.
(C) the operator $T+\lambda I$ is not injective.
(D) the operator $T+\lambda I$ is not surjective.
(E) none of these.

Math 430 Quiz 2 Version A
6. Work one of the following homework problems:
$\S \mathbf{3} \# \mathbf{5}$: Suppose that $T \in \mathcal{L}(V, W)$ is injective and $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent in V. Prove that $\left(T v_{1}, \ldots, T v_{n}\right)$ is linearly independent in W.
$\S \mathbf{3} \# \mathbf{7}$: Prove that if $\left(v_{1}, \ldots, v_{n}\right)$ spans V and $T \in \mathcal{L}(V, W)$ is surjective, then $\left(T v_{1}, \ldots, T v_{n}\right)$ spans W.

Math 430 Quiz 2 Version A
7. Prove one of the following:

Theorem 5.6: Let $T \in \mathcal{L}(V)$. Suppose $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalue of T and v_{1}, \ldots, v_{m} are corresponding nonzero eigenvectors. Then $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent.
Theorem 5.10: Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.

