- 1. A list of vectors is called orthonormal if and only if
 - (A) the vectors in it are pairwise orthogonal and each vector has norm 1.
 - (B) for every $v \in V$ there exists $k \in \mathbf{N}$ such that $\langle v, e_k \rangle = 0$.
 - (C) for every $v \in V$ there exists $k \in \mathbf{N}$ such that $\langle v, e_k \rangle = 1$.
 - (D) for every $v \in V$ there exists $k \in \mathbf{N}$ such that $||v|| = ||e_k||$.
 - (E) none of these.
- **2.** An orthonormal basis of V is
 - (A) any list of linearly independent vectors (e_1, \ldots, e_n) that span V.
 - (B) equal to range(Q) where $Q \in \mathcal{L}(V)$ is an orthogonal operator.
 - (C) obtained by setting $e_i = v_i / ||v_i||$ where (v_1, \ldots, v_n) is a basis of V.
 - (D) an orthonormal list of vectors in V that is also a basis of V.
 - (E) none of these.
- **3.** The orthogonal complement of U, denoted U^{\perp} , is given by
 - (A) $U^{\perp} = \{ v \in V : \text{ there exists } u \in U \text{ such that } \langle v, u \rangle = 0 \}.$
 - (B) $U^{\perp} = \{ v \in V : \text{ there exists } u \in U \text{ such that } \langle v, u \rangle = 1 \}.$
 - (C) $U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for all } u \in U \}.$
 - (D) $U^{\perp} = \{ v \in V : \langle v, u \rangle = 1 \text{ for all } u \in U \}.$
 - (E) none of these.
- **4.** Let P be the orthogonal projection of V onto U. Given $v \in V$ let v = u + w where $u \in U$ and $w \in U^{\perp}$. Then generally
 - (A) Pv = w.
 - (B) Pu = v.
 - (C) Pv = u.
 - (D) Pu = w.
 - (E) none of these.
- 5. Let V and W be finite-dimensional complex inner product spaces and $T \in \mathcal{L}(V, W)$. The adjoint of T, denoted T^* , is the unique linear map in $\mathcal{L}(W, V)$ such that
 - (A) $\langle Tv, w \rangle = \langle T^*w, v \rangle$ for every $v \in V$ and $w \in W$.
 - (B) $\langle Tv, w \rangle = \langle v, T^*w \rangle$ for every $v \in V$ and $w \in W$.
 - (C) $TT^*w = w$ for every $w \in W$.
 - (D) $T^*Tv = v$ for every $v \in V$.
 - (E) none of these.

Math 430/630 Quiz 3 Version A

6. Let

$$A = \begin{bmatrix} 1 & 2\\ 1 & 5 \end{bmatrix}.$$

Find an orthogonal matrix Q and an upper triangular matrix R such that A = QR.

Math 430/630 Quiz 3 Version A

7. Prove one of following:

Corollary 6.33: If U is a subspace of V, then $U = (U^{\perp})^{\perp}$. Adjoint of ajoint: If $T \in \mathcal{L}(V, W)$, then $T = (T^*)^*$. Math 430/630 Quiz 3 Version A

8. Extra Credit: Prove

Triangle Inequality: If $u, v \in V$ then $||u + v|| \le ||u|| + ||v||$.