Note, unless otherwise stated, that \mathbf{F} denotes \mathbf{R} or \mathbf{C} and V is a finite-dimensional, nonzero, inner-product space over \mathbf{F} .

- **1.** An operator $T \in \mathcal{L}(V)$ is called self-adjoint if and only if
 - (A) $T^* = T$.
 - (B) $T^* = T^{-1}$.
 - (C) $T^*T = TT^*$.
 - (D) $||Tv|| = ||T^*v||$ for all $v \in V$.
 - (E) none of these.
- 2. An operator on an inner-product space is called normal if and only if
 - (A) T has a p.d.f. of the form $\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$. (B) T has a p.d.f. of the form $\frac{1}{\sigma^2 2\pi}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$.
 - (C) ||Tv|| = ||v|| for every $v \in V$.
 - (D) $T^*T = TT^*$.
 - (E) none of these.
- **3.** An operator $T \in \mathcal{L}(V)$ is called positive if and only if
 - (A) T is normal and $\langle Tv, v \rangle \ge 0$ for all $v \in V$.
 - (B) T is normal and $\langle Tv, w \rangle \ge 0$ for all $v, w \in V$.
 - (C) T is self-adjoint and $\langle Tv, v \rangle \ge 0$ for all $v \in V$.
 - (D) T is self-adjoint and $\langle Tv, w \rangle \ge 0$ for all $v, w \in V$.
 - (E) none of these.
- 4. An operator $S \in \mathcal{L}(V)$ is called a square root of an operator $T \in \mathcal{L}(V)$ if and only if
 - (A) S is positive and $S^2 = T$.
 - (B) S is self-adjoint and $S^2 = T$.
 - (C) $S^2 = T$.
 - (D) $S^*S = SS^* = T.$
 - (E) none of these.

5. An operator $S \in \mathcal{L}(V)$ is called an isometry if and only if

- (A) for every $v \in V$ there exists $\theta \in \mathbf{R}$ such that $Sv = e^{i\theta}v$.
- (B) ||Sv|| = ||v|| for every $v \in V$.
- (C) $S^*S = SS^*$.
- (D) $S^* = S$.
- (E) none of these.

6. Prove one of the following:

Proposition 7.2: Let V be a finite dimensional, nonzero, complex inner-product space. If T is an operator on V such that $\langle Tv, v \rangle = 0$ for all $v \in V$, then T = 0.

Proposition 7.4: Let V be a finite dimensional, nonzero, real innerproduct space. If T is a self-adjoint operator on V such that $\langle Tv, v \rangle = 0$ for all $v \in V$, then T = 0.

Proposition 7.6: Let V be a finite dimensional, nonzero, innerproduct space over **F**. An operator $T \in \mathcal{L}(V)$ is normal if and only if $||Tv|| = ||T^*v||$ for all $v \in V$. Math 430/630 Quiz 4 Version A

7. Extra Credit: Clearly state both the complex spectral theorem and the real spectral theorem. Compare and contrast the two theorems. Be as specific as possible.