Note, unless otherwise stated, that \mathbf{F} denotes \mathbf{R} or \mathbf{C} and V is a finite-dimensional, nonzero, inner-product space over \mathbf{F}.

1. An operator $T \in \mathcal{L}(V)$ is called self-adjoint if and only if
(A) $T^{*}=T$.
(B) $T^{*}=T^{-1}$.
(C) $\quad T^{*} T=T T^{*}$.
(D) $\|T v\|=\left\|T^{*} v\right\|$ for all $v \in V$.
(E) none of these.
2. An operator on an inner-product space is called normal if and only if
(A) T has a p.d.f. of the form $\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$.
(B) T has a p.d.f. of the form $\frac{1}{\sigma^{2} 2 \pi} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$.
(C) $\|T v\|=\|v\|$ for every $v \in V$.
(D) $T^{*} T=T T^{*}$.
(E) none of these.
3. An operator $T \in \mathcal{L}(V)$ is called positive if and only if
(A) T is normal and $\langle T v, v\rangle \geq 0$ for all $v \in V$.
(B) T is normal and $\langle T v, w\rangle \geq 0$ for all $v, w \in V$.
(C) T is self-adjoint and $\langle T v, v\rangle \geq 0$ for all $v \in V$.
(D) T is self-adjoint and $\langle T v, w\rangle \geq 0$ for all $v, w \in V$.
(E) none of these.
4. An operator $S \in \mathcal{L}(V)$ is called a square root of an operator $T \in \mathcal{L}(V)$ if and only if
(A) S is positive and $S^{2}=T$.
(B) S is self-adjoint and $S^{2}=T$.
(C) $\quad S^{2}=T$.
(D) $\quad S^{*} S=S S^{*}=T$.
(E) none of these.
5. An operator $S \in \mathcal{L}(V)$ is called an isometry if and only if
(A) for every $v \in V$ there exists $\theta \in \mathbf{R}$ such that $S v=e^{i \theta} v$.
(B) $\|S v\|=\|v\|$ for every $v \in V$.
(C) $S^{*} S=S S^{*}$.
(D) $S^{*}=S$.
(E) none of these.
6. Prove one of the following:

Proposition 7.2: Let V be a finite dimensional, nonzero, complex inner-product space. If T is an operator on V such that $\langle T v, v\rangle=0$ for all $v \in V$, then $T=0$.

Proposition 7.4: Let V be a finite dimensional, nonzero, real innerproduct space. If T is a self-adjoint operator on V such that $\langle T v, v\rangle=0$ for all $v \in V$, then $T=0$.

Proposition 7.6: Let V be a finite dimensional, nonzero, innerproduct space over \mathbf{F}. An operator $T \in \mathcal{L}(V)$ is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all $v \in V$.

Math 430/630 Quiz 4 Version A
7. Extra Credit: Clearly state both the complex spectral theorem and the real spectral theorem. Compare and contrast the two theorems. Be as specific as possible.

