
Math/CS 466/666 Lecture 06

The Quadratic Equation Made Difficult

Remember the quadratic formula

x =
−b ±

√
b2 − 4ac

2a
.

This formula gives the solution of the quadratic equation ax2 + bx + c = 0 in terms
of the five operations of addition, subtraction, multiplication, division and square root
extraction. Numbers which can be written in terms of these basic five operations are
called constructible. For such numbers, it is common to rationalize the denominator so
that the only surds which appear are in the numerator. This is the form used for the
quadratic formula.

A naive Matlab program to solve quadratic equations might look like

Matlab Example 5a
1 function [x1,x2]=qform5a(a,b,c)

2 x1=(-b+sqrt(b*b-4*a*c))/(2*a);

3 x2=(-b-sqrt(b*b-4*a*c))/(2*a);

After storing the above lines in the file qform5a, we may run the above program as

Running Example 5a
>> format long

>> [x1,x2]=qform5a(1,100,1)

x1 = -0.0100010002000488

x2 = -99.9899989998000

However, solutions to the quadratic equation computed by this program are not as precise
as they should be. If b is large compared to a and c, then

√
b2 − 4ac ≈ b. In this case a loss

of precision will result from the subtraction of two nearly equal numbers in the numerator
of the quadratic formula.

For example, let us solve the quadratic equation

x2 + 100x + 1 = 0

using a decimal floating point representation with 3 significant digits. Since

sqrt(1002 −∗ 4) = sqrt(1.00 × 104) = 100,

then

x∗1 =
(−100 +∗ 100

2

)

∗

= 0.

All significant digits in this approximation x∗1 of x1 have been lost due to cancellation.
A better approximation can be obtained by rewriting the quadratic formula in a form

that avoids the cancellation.

x =
−b ±

√
b2 − 4ac

2a
· −b ∓

√
b2 − 4ac

−b ∓
√

b2 − 4a
=

2c

−b ∓
√

b2 − 4a

1

Math/CS 466/666 Lecture 06

Using this mathematically equivalent form we obtain

x∗1 =
(2

−100 −∗ 100

)

∗

= −0.100

This approximation is correct to three significant digits, the best we could hope for.

Similar arguments show that the approximation of x2 is best performed using the
original form of the quadratic formula. In fact, if we try to calculate x2 using the modified
version of the quadratic formula that was so successful for x1, the calculation fails with a
division by 0. A correct program for solving the quadratic equation must first test whether
b is positive or negative and then use the appropriate form of the quadratic formula that
avoids subtraction and the resulting loss of precision for each solution. A Matlab program
that employs such a strategy is

Matlab Example 5b
1 function [x1,x2]=qform5b(a,b,c)

2 if b>0

3 x1=(2*c)/(-b-sqrt(b*b-4*a*c));

4 x2=(-b-sqrt(b*b-4*a*c))/(2*a);

5 else

6 x1=(-b+sqrt(b*b-4*a*c))/(2*a);

7 x2=(2*c)/(-b+sqrt(b*b-4*a*c));

8 end

More complicated formulae for solving cubic and quartic equations exist. The appro-
priate algebraic transformation to avoid loss of precision when using these formulae for
numerical calculation are also more complicated. Moreover, it was proved by Abel in 1824
that no general formula exists for the solving polynomial equations of degree 5 or higher.
Therefore more general methods are needed for solving these and other equations.

The intermediate value theorem guarantees that if f : [a, b] → R is a continuous
function such that f(a) and f(b) have opposite signs, then there exists x ∈ (a, b) such that
f(x) = 0. This observation leads to a simple method of searching for roots of a continuous
function called the bisection method or binary search.

The bisection method proceeds as follows: Guess the root of f to be the midpoint
c = (a + b)/2 of the interval [a, b]. If f(c) = 0, then we’re lucky and there is no need to
continue. If f(c) has the opposite sign of f(a) then there must be a root in [a, c] so we
continue by looking for a root there. If f(c) has the opposite sign of f(b) then we continue
looking for the root in [c, b].

At each step the length of the interval under consideration is cut in half. Moreover,
the intermediate value theorem guarantees that there is a solution to f(x) = 0 in that
interval. In particular, after n iterations we know that the solution x is contained in an
interval of length (b − a)/2n. Therefore, by approximating x by the midpoint x∗ = c of
the n-th interval, we obtain that |x∗ − x| < (b − a)/2n+1.

How many iterations to make is dependent on the accuracy of the solution required.

2

Math/CS 466/666 Lecture 06

A Matlab program that finds an approximate solution x∗ with absolute error less than ǫ is

Matlab Example 5c
1 function x=bisect5c(f,a,b,epsilon)

2 e2=epsilon*2;

3 fa=feval(f,a);

4 fb=feval(f,b);

5 if fa*fb>=0 || b<=a

6 disp(’Not a good initial bracket!’);

7 end

8 while b-a >= e2

9 c=(a+b)/2;

10 fc=feval(f,c);

11 if fc==0.0

12 x=c;

13 return

14 end

15 if fc*fa>0

16 a=c;

17 else

18 b=c;

19 end

20 end

21 x=(a+b)/2;

After storing the above lines in the file bisect5c, we may run the above program as

Running Example 5c
>> bisect5c(’sin’,1,4,0.001)

ans = 3.14141845703125

>> f=inline(’x*x+100*x+1’);

>> bisect5c(f,-1,0,0.001)

ans = -0.0100097656250000

Note, that since the interval [a, b] itself must be represented using a floating point
approximation [a∗, b∗], then there is a point after which it can’t be cut in half again. In
particular, after a certain number of iterations the approximate bisecting operation

c∗ =
(a +∗ b

2

)

∗

will be rounded so that c∗ is equal to either a∗ or b∗. At this point the bisection algorithm
must stop—we have reached machine precision.

We seldom need machine precision. However, if machine precision is required, the

3

Math/CS 466/666 Lecture 06

Matlab code can be modified to use c∗ = a∗ or c∗ = b∗ as a stopping condition. We obtain

Matlab Example 5d
1 function x=bisect5d(f,a,b)

2 fa=feval(f,a);

3 fb=feval(f,b);

4 if fa*fb>=0 || b<=a

5 disp(’Not a good initial bracket!’);

6 end

7 c=(a+b)/2;

8 while c ~= a && c ~= b

9 fc=feval(f,c);

10 if fc==0.0

11 x=c;

12 return

13 end

14 if fc*fa>0

15 a=c;

16 else

17 b=c;

18 end

19 c=(a+b)/2;

20 end

21 x=(a+b)/2;

This program approximates the solution x to f(x) = 0 as accurately as possible. For
example, we may approximate π by solving sin(x) = 0 on the interval [1, 4] as

Running Example 5d
>> bisect5d(’sin’,1,4)

ans = 3.14159265358979

>> pi

pi = 3.14159265358979

>> bisect5d(f,-1,0)

ans = -0.0100010002000500

As a final note, depending on the programming language, complier, and compiler
optimizations used, a stopping condition that depends on an exact equality like the one
used in Example 5d can sometimes fail to work properly. Suppose a and b are stored as
double precision floating point numbers and that the floating point registers of the FPU
work in extended double precision. This is the default for many Intel FPUs. If c = (a+b)/2
is computed using FPU registers in extended double precision, then it will never be equal
to the double precision values of a and b. In this case the above program might enter
an infinite loop. Similarly, testing for equality between a single precision and a double
precision variable is almost always sure to fail. As a general rule it is usually best to avoid
testing for exact equality between any two floating point numbers.

4

