
Math/CS 466/666 Lecture 08

Newton’s Method

Newton’s method may be viewed as a way of creating a function Φ such that the fixed point
iteration xn+1 = Φ(xn) converges rapidly to a solution of f(x) = 0 for all initial value of
x0 sufficiently near the solution. You’ve probably met Newton’s method in Calculus class.
There it was derived by setting xn+1 equal to the root of the tangent line approximation
to f through the point (xn, f(xn)). Graphically we have

Newton’s Method

xnxn+1

xnf(  )

Therefore, equating the slope of the tangent line to the derivative at xn, we obtain

f(xn) − 0

xn − xn+1

= f ′(xn).

Solving for xn+1 yields

xn+1 = Φ(xn) where Φ(x) = x − f(x)

f ′(x)
.

Newton’s method was proposed by Issac Newton in 1669 as a way to find the roots of
polynomial equations and was used by Heron the elder in 100BC to approximate

√
a. All

of this happened before digital computers became widespread. Newton’s method is such
a good method for solving non-linear equations, that we still use it today.

Recall that for Φ to be suitable for solving f(x) = 0 by fixed point iteration it should
satisfy the conditions

1. Φ(x) = x if and only if f(x) = 0, and

2. |Φ′(x)| < 1 in a neighborhood of the solution.

Let us check these conditions for the Φ given by Newton’s method. First note, provided
f ′(x) 6= 0, that f(x) = 0 if and only if Φ(x) = x. Now we assume f is two times
continuously differentiable and differentiate to obtain

Φ′(x) = 1 − f ′(x)f ′(x) − f(x)f ′′(x)

[f ′(x)]2
=

f(x)f ′′(x)

[f ′(x)]2
.

Let x = α be a solution to f(x) = 0. Then Φ′(α) = 0. It follows, by continuity, that
Φ′(x) is close to zero when x is close to α. Therefore |Φ′(x)| < 1 in a neighborhood of the
solution α. In summary, we obtain
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Newton’s Method Convergence Criterion. Let f be two times continuously differ-
entiable. If
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f(x)f ′′(x)

[f ′(x)]2

∣
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< 1

for all x such that |x − α| ≤ |x0 − α|, then Newton’s method converges.

Newton’s method, provides a way of choosing a Φ suitable for fixed point iteration.
There are many other ways to choose Φ as well. In order to compare different fixed point
iteration schemes we shall need a way of comparing how fast they converge. Suppose
xn → α as n → ∞. Let the absolute errors en = xn − α. We say the order of convergence
of xn is (at least) p if there exists K > 0 such that

|en+1| ≤ K|en|p as n → ∞.

Note, in the limiting case p = 1 we further insist that K < 1.
It was shown in the previous lecture that |Φ′(x)| ≤ λ < 1 implies

|en+1| = |Φ′(cn)en| ≤ λ|en|.
Therefore, every function Φ that satisfies conditions 1 and 2 has order of convergence at
least 1. We now prove that Newton’s method has quadratic order of convergence.

Newton’s Method Order of Convergence. Suppose f is two times continuously
differentiable and let x = α be a solution to f(x) = 0. Further suppose f ′(α) 6= 0. Then,
for an initial guess x0 sufficiently close to α, the fixed point iteration xn+1 = Φ(xn) given
by Newton’s method converges to α with order of convergence 2.

By Taylor’s theorem there exists cn between xn and α such that

0 = f(α) = f(xn − en) = f(xn) − enf ′(xn) +
e2
n

2
f ′′(cn).

By definition

en+1 = xn+1 − α = Φ(xn) − α = xn − f(xn)

f ′(xn)
− α = en − f(xn)

f ′(xn)
.

Solving for f(xn)/f ′(xn) in Taylor’s theorem we obtain

f(xn)

f ′(xn)
= en − e2

n

2

f ′′(cn)

f ′(xn)
.

Therefore

en+1 = en − en +
e2
n

2

f ′′(cn)

f ′(xn)
=

e2
n

2

f ′′(cn)

f ′(xn)
.

Letting K be a bound such that

1

2
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f ′′(cn)

f ′(xn)
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≤ K for all n ∈ N,

we obtain

|en+1| =

∣
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e2
n

2

f ′′(cn)

f ′(xn)
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≤ K|en|2.

Therefore Newton’s method is quadratically convergence.
Note again the proviso that f ′(x) 6= 0. Nothing good can ever come from dividing by

zero and f ′(x) appears in the denominator of Newton’s method.
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