
Math/CS 466/666 Lecture 20

Propagation of Errors in Least Squares

There are three questions to consider when fitting parameters. These are

1. What is the best choice of parameters?
2. What are the errors estimates for the parameters?
3. What is the statistical measure of the goodness-of-fit?

We have already discussed how to use least squares to find the choice of parameters that
maximize the likelihood of the data. We now address the second and third questions.

Normally distributed random variables are stable in the sense that the sum of two
independent normally distributed random variables is another normally distributed random
variable. Moreover, if wi are weights and Yi are independent normally distributed random
variables with with mean fi and variance σ2

i , then Z =
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w2
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i . We shall use this fact to
calculate how independent normally distributed measurement errors propagate to error
estimates for the solution of the least squares problem.

Recall that the best choice of parameters c is given by the maximum likelihood es-
timator c = R−1
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ỹ where R1 is an m × m upper triangular matrix, Q1 is an n × m

matrix with orthogonal columns and the data points ỹi = yi/σi have be rescaled to be
independently normally distributed with variance 1. Since each cj is a weighted sum of the
data points ỹi then each cj also has a normally distributed error. Thus, we may calculate
the variance σ(cj)

2 of cj as

σ(cj)
2 =

n
∑

i=1

[R−1

1
QT

1
]2ji =

n
∑

i=1

(

m
∑

k=1

[R−1

1
]jk[Q1]ki

)2

=
n

∑

i=1

m
∑

k=1

m
∑

l=1

[R−1

1
]jk[QT

1
]ki[R

−1

1
]jl[Q

T
1
]li

=

m
∑

k=1

m
∑

l=1

(

n
∑

i=1

[QT
1
]ki[Q1]il

)

[R−1

1
]jk[R−1

1
]jl

=

m
∑

k=1

m
∑

l=1

[I]kl[R
−1

1
]jk[R−1

1
]jl =

m
∑

k=1

[R−1

1
]2jk = [R−1

1
(R−1

1
)T ]jj

In statistics, the matrix V = R−1

1
(R−1

1
)T is called the covariance matrix. The diagonal

entries of V represent the variances of cj and the off-diagonal entries the covariances.
Continuing Matlab Example 19a, we can form the covariance matrix by

Matlab Example 20a
>> [Q1,R1]=qr(Atilde,0);

>> R1inv=inv(R1);

>> V=R1inv*R1inv’

V =

1.3971647 -0.1825548 -0.2272652 0.0422962

-0.1825548 0.3979981 0.0686120 -0.0329736

-0.2272652 0.0686120 0.0652944 -0.0146202

0.0422962 -0.0329736 -0.0146202 0.0045669
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The diagonal entries of this matrix are the variances σ(cj)
2 of the cj. An estimate of the

errors in the cj’s is then given by the standard deviations σ(cj) found by taking the square
roots of the diagonal entries of V . This is shown in

Matlab Example 20b
>> stddev=sqrt(diag(V))’

stddev =

1.182017 0.630871 0.255528 0.067579

We end with a discussion of a statistical measure of the goodness-of-fit. First let us
examine the graph of the data points and the least squares approximation we just found.
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It’s tempting to say, it looks good, and be done. However, statistics can tell us more.
Let n be the number of data points and m be the number of parameters. The proba-

bility that the minimum of χ2 is less than C2 is given by

P = P{χ2 < C2 } =
1

Γ(a)

∫ C2/2

0

e−tta−1dt

where a = (n − m)/2. Therefore, if we set C2 = ‖Ãc − ỹ‖2

2
for the optimal parameter

c found for the observed data points yi, then Q = 1 − P should be substantially greater
than 0. As a rule of thumb, Q much less than 10−3 is considered a bad fit. This provides
a quantitative measure of the goodness of fit.

The integral defining P is known as the incomplete gamma function. We will learn
numerical quadrature rules for computing such integrals later in this course. For now, note
that just like log and sin, Matlab has this particular function, called gammainc, built in.
Thus, to compute Q we may write

Matlab Example 20c
>> C2=norm(Atilde*c-ytilde)^2

C2 = 54.361

>> Q=1-gammainc(C2/2,(length(ytilde)-length(c))/2)

Q = 0.18608

Since this value of Q is far from zero, then we conclude that the data fits the model.
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