
Math/CS 466/666 Lecture 22

Krylov Subspace Methods

When solving differential equations one can encounter matrices so large that they don’t
fit in memory. Such matrices are generally given by a formula that allows each entry aij

to be recomputed whenever it is needed. An example of such a matrix is given by

aij =

{

4 if i = j
−1 if i = j + 1 or i + 1 = j
0 otherwise.

Note many of the entries aij are identically zero. This is so often the case that Matlab has
a matrix type called sparse that stores only the non-zero entries of A. For the tridiagonal
matrix given above one could also store the upper, lower and main diagonal entries as three
vectors. Moreover, because the location of the zeros in tridiagonal matrices is particularly
convenient, in this case Gaussian elimination can be efficiently used to solve Ax = b.

This is not always the case. Consider the matrix given by

aij =

{

5 if i = j
−1/|i − j|2 otherwise.

All entries of this matrix are non-zero. Still, multiplication by A can be represented by a
function that computes Ax for any vector x. In Matlab we may express this matrix as

Matlab Example 22a
1 function y=multA(x)

2 n=length(x);

3 c=[-1.0./[n-1:-1:1].^2,5,-1.0./[1:n-1].^2];

4 for j=n:-1:1

5 y(j,1)=c(n-j+1:2*n-j)*x;

6 end

Our goal is to find an approximate solution to the equation Ax = b. The difficulty is that
since A doesn’t fit into memory we can’t use the LU or QR decompositions directly.

Define the m-th Krylov subspace as

Km = span{b,Ab,A2b, . . . , Am−1b}.

Take as an approximate solution of Ax = b the x∗ ∈ Km that minimizes ‖Ax − b‖. Note
that the vectors b,Ab, . . . , Am−1 may not all be linearly independent. When they are
linearly dependent there is a non-trivial linear combination of vectors such that

c0b + c1Ab + c2A
2b + · · · + cm−1A

m−1b = 0.

In this case we assume may that c0 6= 0 and then solve to find that

x∗ =
−1

c0

(

c1b + c2Ab + · · · + cm−1A
m−2b

)

∈ Km

1

Math/CS 466/666 Lecture 22

is an exact solution to Ax = b.
Since it is impossible to have more than n linearly independent vectors in Rn, then

taking m ≥ n guarantees that the exact solution to Ax = b is contained in Km. Thus, for
large enough m there is x∗ ∈ Km which is a good approximation to Ax = b. On the other
hand, if m is not too large then we can store a basis for Km in memory. Our hope is to
obtain a good approximation for small m. This requires A to have special properties.

Generally, we prefer to work with an orthogonal basis, so let

Γm =
[

b
∣

∣

∣
Ab

∣

∣

∣
· · ·

∣

∣

∣
Am−1b

]

and form the reduced QR decomposition Γm = QmRm where Qm is an n×m matrix and
Rm is m × m. It follows that x∗ = Qmz where z is the least squares solution to the over
determined system of equations AQmz = b.

Let us illustrate this technique, called GMRES for generalized minimum residual
method, to solve Ax = b using the matrix defined in Matlab Example 22a. We take
m = 10 and n = 10000. Note that a 10000 × 10000 matrix would take 762MB of memory
to store whereas a 10 × 10000 matrix only takes 762KB.

Matlab Example 22b
>> m=10;

>> n=10000;

>> b=rand(n,1);

>> Gamma(:,1)=b;

>> for j=2:m

>> Gamma(:,j)=multA(Gamma(:,j-1));

>> end

>> [Q,R]=qr(Gamma,0);

>> clear Gamma;

>> for j=1:m

>> AQ(:,j)=multA(Q(:,j));

>> end

>> z=AQ\b;

>> x=Q*z;

>> r=b-multA(x);

>> norm(r)

ans = 0.00050635

A better approximation can be found by increasing m or by iterating. Iteration is
accomplished by defining the residual r = b − Ax∗ and then approximating the solution
y∗ to Ay = r using the same techniques as before. In this case

A(x∗ + y∗) = Ax∗ + Ay∗ ≈ Ax∗ + r = b.

Therefore x∗ + y∗ should be a better approximation to the solution of Ax = b. Iterating
reduces the error in Matlab Example 22b to ‖A(x∗ + y∗) − b‖ = 1.0554 × 10−8.

Next time we discuss some refinements that allow efficient computation of the approx-
imation lying in Km+1 after already having found the approximation in Km.

2

