The Arnoldi Process

We now discuss some refinements that allow efficient computation of the approximation lying in \mathcal{K}_{m+1} after already having found the approximation in \mathcal{K}_m . Write

$$Q_m = \left[\left. q_1 \right| q_2 \right| \cdots \left| q_m \right]$$

where q_i are orthonormal column vectors. If we use the modified Gram-Schmidt algorithm to form Q_m then for each j = 1, ..., m the span of the first j columns of Q_m is equal to the span of the first j columns of Γ_m . Thus, Q_{m+1} may be formed by simply adding an additional column q_{m+1} to Q_m obtained from $A^m b$ using the Gram-Schmidt algorithm

$$t_0 = A^m b,$$
 $t_{k+1} = t_k - (q_k \cdot t_k)q_k,$ $q_{m+1} = t_{m+1}/||t_{m+1}||.$

Therefore, when moving from \mathcal{K}_m to \mathcal{K}_{m+1} there is no need to recompute the entire reduced QR decomposition of Γ_{m+1} over again. This method of computing Q_{m+1} from Q_m is called the Arnoldi process.

A similar savings can be achieved when solving the least squares problem $AQ_{m+1}z = b$. First note that if $v \in \mathcal{K}_{m+1}$ then $\|Q_{m+1}^T v\| = \|v\|$. To see why this is true, let $v \in K_{m+1}$. Since the column space $C(Q_{m+1}) = K_{m+1}$ it follows that there exists $w \in \mathbb{R}^{m+1}$ such that $Q_{m+1}w = v$. Thus $Q_{m+1}^T Q_{m+1} = I$ implies

$$||Q_{m+1}^T v|| = ||Q_{m+1}^T Q_{m+1} w|| = ||w||$$

and also

$$||v|| = ||Q_{m+1}w|| = \sqrt{w^T Q_{m+1}^T Q_{m+1}w} = \sqrt{w^T w} = ||w||.$$

Therefore $||Q_{m+1}^T v|| = ||v||.$

Since $A\Gamma_m \in \mathcal{K}_{m+1}$ then $AQ_m \in K_{m+1}$ and so $AQ_m z - b \in \mathcal{K}_{m+1}$. Moreover, since $q_1 = b/\|b\|$, then $Q_{m+1}^T b = \|b\|e_1$ where $e_1 \in \mathbf{R}^{m+1}$ is the vector with first component equal 1 and the rest zero. It follows that

$$||AQ_m z - b|| = ||Q_{m+1}^T AQ_m z - Q_{m+1}^T b|| = ||H_m z - ||b||e_1||$$

where $H_m = Q_{m+1}^T A Q_m$. Thus, solving the least squares problem $A Q_m z = b$ is equivalent to solving the least squares problem $H_m z = ||b||e_1$.

By definition H_m is the $(m + 1) \times m$ matrix consisting of the entries $h_{ij} = q_i^T A q_j$. Since q_i is perpendicular to \mathcal{K}_{i-1} then $A q_j \in \mathcal{K}_{j+1}$ implies that $q_i^T A q_j = 0$ when i > j + 1. Therefore the left corner of H_m beneath the lower sub-diagonal is zero. Such matrices are called upper Hessenberg.

We now discuss how to obtain the reduced QR decomposition of H_{m+1} from the reduced QR decomposition of H_m . Since we have already used Q_m for the matrix in the Arnoldi process let us denote the reduced QR decomposition of H_m by $P_m U_m$. Thus $H_m = P_m U_m$ where P_m is a $(m + 1) \times m$ matrix with orthonormal columns and U_m is a $m \times m$ upper triangular matrix. Using the modified Gram-Schmidt algorithm to form P_m preserves the zeros in H_m . Thus P_m is also upper Hessenberg. In particular, $H_m = P_m U_m$ has a Wilkinson diagram that looks like

Γх	х	х	• • •	хĪ		Гx	х	x	• • •	х٦	_				_	_
					=							х	х	•••	x	1
				х		X	х	х	• • •	х		v	v		v	
0	x	x		x		0	x	x		x		A	A			
					_						0	0	х	• • •	х	
0	0	х	• • •	х			0	х	• • •	х						•
.	:	•		•		.	•	•		:		:	:	•••	:	
:	:	:	••	:		:	:	:	۰.	:		0				
	Ω	Ο		v			Ο	Ο		v	ΓU	0	U	•••	x	
LU	U	U				LU	U	U								

Now, it is clear that P_{m+1} may be obtained from P_m by first adding a row of zeros at the bottom and then performing the modified Gram-Schmidt algorithm on the vector

$$h_{m+1} = \begin{bmatrix} q_1^T A q_{m+1} \\ \vdots \\ q_{m+2}^T A q_{m+1} \end{bmatrix}$$

to obtain the m + 1 column of P_{m+1} . In this way the reduced QR decomposition of H_{m+1} may be obtained by extending the reduced QR decomposition of H_m by one additional row and one additional column. A Matlab code for GMRES using these techniques is

Matlab Example 23a

```
1 function x=krylov(A,b,mmax,tol)
       P=[]; b1=norm(b); e1=1;
\mathbf{2}
       Q(:,1)=b/b1;
3
       for m=1:mmax
4
            t=A*Q(:,m);
\mathbf{5}
            for j=1:m
6
               t=t-(Q(:,j)'*t)*Q(:,j);
\overline{7}
8
            end
            Q(:,m+1)=t/norm(t);
9
            e1(m+1,1)=0.0;
10
            P(m+1,:)=0.0;
11
            t=Q'*A*Q(:,m);
12
            for j=1:m-1
13
                U(j,m)=P(:,j)'*t;
14
                t=t-U(j,m)*P(:,j);
15
            end
16
            U(m,m)=norm(t);
17
            P(:,m)=t/U(m,m);
18
            rnorm=norm((P*P(1,:)'-e1)*b1);
19
            disp(sprintf('norm(m=%d)=%g',m,rnorm));
20
            if rnorm<=tol; break; end
21
22
       end
       z=(U\P(1,:)')*b1;
23
       x=Q(:,1:m)*z;
24
25 end
```