The Arnoldi Process

We now discuss some refinements that allow efficient computation of the approximation lying in \mathcal{K}_{m+1} after already having found the approximation in \mathcal{K}_{m}. Write

$$
Q_{m}=\left[q_{1}\left|q_{2}\right| \cdots \mid q_{m}\right]
$$

where q_{i} are orthonormal column vectors. If we use the modified Gram-Schmidt algorithm to form Q_{m} then for each $j=1, \ldots, m$ the span of the first j columns of Q_{m} is equal to the span of the first j columns of Γ_{m}. Thus, Q_{m+1} may be formed by simply adding an additional column q_{m+1} to Q_{m} obtained from $A^{m} b$ using the Gram-Schmidt algorithm

$$
t_{0}=A^{m} b, \quad t_{k+1}=t_{k}-\left(q_{k} \cdot t_{k}\right) q_{k}, \quad q_{m+1}=t_{m+1} /\left\|t_{m+1}\right\| .
$$

Therefore, when moving from \mathcal{K}_{m} to \mathcal{K}_{m+1} there is no need to recompute the entire reduced $Q R$ decomposition of Γ_{m+1} over again. This method of computing Q_{m+1} from Q_{m} is called the Arnoldi process.

A similar savings can be achieved when solving the least squares problem $A Q_{m+1} z=b$. First note that if $v \in \mathcal{K}_{m+1}$ then $\left\|Q_{m+1}^{T} v\right\|=\|v\|$. To see why this is true, let $v \in K_{m+1}$. Since the column space $C\left(Q_{m+1}\right)=K_{m+1}$ it follows that there exists $w \in \mathbf{R}^{m+1}$ such that $Q_{m+1} w=v$. Thus $Q_{m+1}^{T} Q_{m+1}=I$ implies

$$
\left\|Q_{m+1}^{T} v\right\|=\left\|Q_{m+1}^{T} Q_{m+1} w\right\|=\|w\|
$$

and also

$$
\|v\|=\left\|Q_{m+1} w\right\|=\sqrt{w^{T} Q_{m+1}^{T} Q_{m+1} w}=\sqrt{w^{T} w}=\|w\|
$$

Therefore $\left\|Q_{m+1}^{T} v\right\|=\|v\|$.
Since $A \Gamma_{m} \in \mathcal{K}_{m+1}$ then $A Q_{m} \in K_{m+1}$ and so $A Q_{m} z-b \in \mathcal{K}_{m+1}$. Moreover, since $q_{1}=b /\|b\|$, then $Q_{m+1}^{T} b=\|b\| e_{1}$ where $e_{1} \in \mathbf{R}^{m+1}$ is the vector with first component equal 1 and the rest zero. It follows that

$$
\left\|A Q_{m} z-b\right\|=\left\|Q_{m+1}^{T} A Q_{m} z-Q_{m+1}^{T} b\right\|=\left\|H_{m} z-\right\| b\left\|e_{1}\right\|
$$

where $H_{m}=Q_{m+1}^{T} A Q_{m}$. Thus, solving the least squares problem $A Q_{m} z=b$ is equivalent to solving the least squares problem $H_{m} z=\|b\| e_{1}$.

By definition H_{m} is the $(m+1) \times m$ matrix consisting of the entries $h_{i j}=q_{i}^{T} A q_{j}$. Since q_{i} is perpendicular to \mathcal{K}_{i-1} then $A q_{j} \in \mathcal{K}_{j+1}$ implies that $q_{i}^{T} A q_{j}=0$ when $i>j+1$. Therefore the left corner of H_{m} beneath the lower sub-diagonal is zero. Such matrices are called upper Hessenberg.

We now discuss how to obtain the reduced $Q R$ decomposition of H_{m+1} from the reduced $Q R$ decomposition of H_{m}. Since we have already used Q_{m} for the matrix in the Arnoldi process let us denote the reduced $Q R$ decomposition of H_{m} by $P_{m} U_{m}$. Thus $H_{m}=P_{m} U_{m}$ where P_{m} is a $(m+1) \times m$ matrix with orthonormal columns and U_{m} is a $m \times m$ upper triangular matrix. Using the modified Gram-Schmidt algorithm to form P_{m}
preserves the zeros in H_{m}. Thus P_{m} is also upper Hessenberg. In particular, $H_{m}=P_{m} U_{m}$ has a Wilkinson diagram that looks like

$$
\left[\begin{array}{ccccc}
\mathrm{x} & \mathrm{x} & \mathrm{x} & \cdots & \mathrm{x} \\
\mathrm{x} & \mathrm{x} & \mathrm{x} & \cdots & \mathrm{x} \\
0 & \mathrm{x} & \mathrm{x} & \cdots & \mathrm{x} \\
0 & 0 & \mathrm{x} & \cdots & \mathrm{x} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{x}
\end{array}\right]=\left[\begin{array}{ccccc}
\mathrm{x} & \mathrm{x} & \mathrm{x} & \cdots & \mathrm{x} \\
\mathrm{x} & \mathrm{x} & \mathrm{x} & \cdots & \mathrm{x} \\
0 & \mathrm{x} & \mathrm{x} & \cdots & \mathrm{x} \\
0 & 0 & \mathrm{x} & \cdots & \mathrm{x} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{x}
\end{array}\right]\left[\begin{array}{ccccc}
\mathrm{x} & \mathrm{x} & \mathrm{x} & \cdots & \mathrm{x} \\
0 & \mathrm{x} & \mathrm{x} & \cdots & \mathrm{x} \\
0 & 0 & \mathrm{x} & \cdots & \mathrm{x} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{x}
\end{array}\right] .
$$

Now, it is clear that P_{m+1} may be obtained from P_{m} by first adding a row of zeros at the bottom and then performing the modified Gram-Schmidt algorithm on the vector

$$
h_{m+1}=\left[\begin{array}{c}
q_{1}^{T} A q_{m+1} \\
\vdots \\
q_{m+2}^{T} A q_{m+1}
\end{array}\right]
$$

to obtain the $m+1$ column of P_{m+1}. In this way the reduced $Q R$ decomposition of H_{m+1} may be obtained by extending the reduced $Q R$ decomposition of H_{m} by one additional row and one additional column. A Matlab code for GMRES using these techniques is

Matlab Example 23a

```
function x=krylov(A,b,mmax,tol)
    P=[]; b1=norm(b); e1=1;
    Q(:, 1)=b/b1;
    for m=1:mmax
        t=A*Q(:,m);
        for j=1:m
            t=t-(Q(:,j)'*t)*Q(:, j);
        end
        Q(:,m+1)=t/norm(t);
        e1 (m+1, 1)=0.0;
        P(m+1,:)=0.0;
        t=Q'*A*Q(:,m);
        for j=1:m-1
            U(j,m)=P(:,j)'*t;
            t=t-U(j,m)*P(:,j);
        end
        U(m,m)=norm(t);
        P(:,m)=t/U(m,m);
        rnorm=norm((P*P(1,:)'-e1)*b1);
        disp(sprintf('norm(m=%d)=%g',m,rnorm));
        if rnorm<=tol; break; end
    end
    z=(U\P(1,:)')*b1;
    x=Q(:, 1:m)*z;
end
```

