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The Arnoldi Process

We now discuss some refinements that allow efficient computation of the approximation
lying in Km+1 after already having found the approximation in Km. Write
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where qi are orthonormal column vectors. If we use the modified Gram-Schmidt algorithm
to form Qm then for each j = 1, . . . ,m the span of the first j columns of Qm is equal to
the span of the first j columns of Γm. Thus, Qm+1 may be formed by simply adding an
additional column qm+1 to Qm obtained from Amb using the Gram-Schmidt algorithm

t0 = Amb, tk+1 = tk − (qk · tk)qk, qm+1 = tm+1/‖tm+1‖.

Therefore, when moving from Km to Km+1 there is no need to recompute the entire reduced
QR decomposition of Γm+1 over again. This method of computing Qm+1 from Qm is called
the Arnoldi process.

A similar savings can be achieved when solving the least squares problem AQm+1z = b.
First note that if v ∈ Km+1 then ‖QT

m+1v‖ = ‖v‖. To see why this is true, let v ∈ Km+1.
Since the column space C(Qm+1) = Km+1 it follows that there exists w ∈ Rm+1 such that
Qm+1w = v. Thus QT

m+1Qm+1 = I implies

‖QT
m+1v‖ = ‖QT

m+1Qm+1w‖ = ‖w‖

and also

‖v‖ = ‖Qm+1w‖ =
√

wT QT
m+1Qm+1w =

√
wT w = ‖w‖.

Therefore ‖QT
m+1v‖ = ‖v‖.

Since AΓm ∈ Km+1 then AQm ∈ Km+1 and so AQmz − b ∈ Km+1. Moreover, since
q1 = b/‖b‖, then QT

m+1b = ‖b‖e1 where e1 ∈ Rm+1 is the vector with first component
equal 1 and the rest zero. It follows that
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∥AQmz − b
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∥
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m+1AQmz − QT
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∥ =
∥

∥Hmz − ‖b‖e1
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∥

where Hm = QT
m+1AQm. Thus, solving the least squares problem AQmz = b is equivalent

to solving the least squares problem Hmz = ‖b‖e1.
By definition Hm is the (m + 1) × m matrix consisting of the entries hij = qT

i Aqj .
Since qi is perpendicular to Ki−1 then Aqj ∈ Kj+1 implies that qT

i Aqj = 0 when i > j +1.
Therefore the left corner of Hm beneath the lower sub-diagonal is zero. Such matrices are
called upper Hessenberg.

We now discuss how to obtain the reduced QR decomposition of Hm+1 from the
reduced QR decomposition of Hm. Since we have already used Qm for the matrix in the
Arnoldi process let us denote the reduced QR decomposition of Hm by PmUm. Thus
Hm = PmUm where Pm is a (m + 1) × m matrix with orthonormal columns and Um is a
m×m upper triangular matrix. Using the modified Gram-Schmidt algorithm to form Pm
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preserves the zeros in Hm. Thus Pm is also upper Hessenberg. In particular, Hm = PmUm

has a Wilkinson diagram that looks like
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Now, it is clear that Pm+1 may be obtained from Pm by first adding a row of zeros at
the bottom and then performing the modified Gram-Schmidt algorithm on the vector

hm+1 =







qT
1 Aqm+1

...
qT
m+2Aqm+1







to obtain the m+1 column of Pm+1. In this way the reduced QR decomposition of Hm+1

may be obtained by extending the reduced QR decomposition of Hm by one additional
row and one additional column. A Matlab code for GMRES using these techniques is

Matlab Example 23a
1 function x=krylov(A,b,mmax,tol)

2 P=[]; b1=norm(b); e1=1;

3 Q(:,1)=b/b1;

4 for m=1:mmax

5 t=A*Q(:,m);

6 for j=1:m

7 t=t-(Q(:,j)’*t)*Q(:,j);

8 end

9 Q(:,m+1)=t/norm(t);

10 e1(m+1,1)=0.0;

11 P(m+1,:)=0.0;

12 t=Q’*A*Q(:,m);

13 for j=1:m-1

14 U(j,m)=P(:,j)’*t;

15 t=t-U(j,m)*P(:,j);

16 end

17 U(m,m)=norm(t);

18 P(:,m)=t/U(m,m);

19 rnorm=norm((P*P(1,:)’-e1)*b1);

20 disp(sprintf(’norm(m=%d)=%g’,m,rnorm));

21 if rnorm<=tol; break; end

22 end

23 z=(U\P(1,:)’)*b1;

24 x=Q(:,1:m)*z;

25 end
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