Machine Epsilon
Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listings and output. If you choose to work in a group of two, please turn in independently prepared reports.

1a. Given $x \in \mathbf{R}$ let x^{*} denote the floating point approximation of x. Write a program to find the greatest δ_{1} such that

$$
\left(x^{*}+\delta_{1}\right)^{*}=x^{*} .
$$

You may use the bisection method with initial interval of $\left[0, x^{*}\right]$. Run your program for x^{*} ranging over the set $\{1,2,3,4,5,10,100,1000\}$ using single precision floating point and again using double precision.
b. For $x \in \mathbf{R}$ fixed define

$$
\delta_{2}=\min \left\{\delta:\left(x^{*}+\delta\right)^{*}=x^{*}\right\} .
$$

Write a program to determine whether $\delta_{1}=-\delta_{2}$. What happens theoretically when chopping is used for x^{*} ? How about when rounding is used?
c. Let J be a bounded subset of \mathbf{R}. Define $J^{*}=\left\{x^{*}: x \in J\right\}$ and $I=\left\{x: x^{*} \in J^{*}\right\}$. The maximum relative error

$$
\epsilon=\max _{x \in I} \frac{\left|x-x^{*}\right|}{|x|} \geq \max _{x \in I} \frac{\left|x-x^{*}\right|}{\left|x^{*}\right|+\left|x-x^{*}\right|}=\max _{x^{*} \in J^{*}} \frac{\delta}{\left|x^{*}\right|+\delta}
$$

where $\delta=\max \left\{\delta_{1},-\delta_{2}\right\}$. Since relative error is bounded by 5×10^{-n} where n is the number of significant digits, then

$$
n \leq \log _{10}\left\{5 \min _{x^{*} \in J^{*}}\left(\frac{\left|x^{*}\right|+\delta}{\delta}\right)\right\}
$$

Write a program to compute this upper bound for n using both single and double precision floating point. Take the set

$$
J^{*}=\{1,2,3,4,5,10,100,1000\}
$$

