1a. Consider the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ defined by

$$
f(x, y)=\frac{1+3 x-y}{3+x^{2}+y^{2}} .
$$

Write subroutines to compute f,

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right] \quad \text { and } \quad J=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right] .
$$

You may use the Maple codegen subroutine library to help write your code. Test your program for (x, y) equal to $(1,2),(-1,4)$ and $(3,-1)$.
b. Write a subroutine to solve the system of linear equations $A x=b$ where A is a 2×2 matrix. Test your program on the problems

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Did you use some form of pivoting? If not, why not?
c. The function $f(x, y)$ has a maximum near $(1,-1)$. Use Newton's method

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]-\left[J\left(x_{n}, y_{n}\right)\right]^{-1} \nabla f\left(x_{n}, y_{n}\right)
$$

to solve $\nabla f=0$ and find this maximum. Instead of computing J^{-1} in the above equation use part b to solve

$$
J\left(x_{n}, y_{n}\right)\left[\begin{array}{l}
a \\
b
\end{array}\right]=\nabla f\left(x_{n}, y_{n}\right)
$$

and then set

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]-\left[\begin{array}{l}
a \\
b
\end{array}\right] .
$$

at each step. Why is it better not to compute J^{-1} ?
d. [Extra credit and for Math/CS 666] Use Newton's method to find the absolute maximum for

$$
f(x, y)=\frac{1+\ln \left(x^{2}+7 y^{2}+1\right)}{1+3 x^{2}+2 y^{2}-x y+x}
$$

Note that this function has two relative maxima. Don't choose the wrong one as the global maximum. Consider starting with a number of different initial guesses and keeping the one that leads to the greatest relative maximum.

