Floating Point Arithmetic

- 1. Evaluate the following expressions using 3-significant-digit base-10 floating point arithmetic. Round to the nearest floating point number and on a tie choose the mantissa whose least significant digit is even.
 - (i) (3.14159)*
 - (ii) $6.19 \times 10^2 + 3.61 \times 10^1$
 - (iii) $1.23 \times 10^3 * 9.54 \times 10^{-5}$
 - (iv) $3.52 \times 10^3 + 5.43 \times 10^0$
 - (v) $(2.71459)^* + (-2.72687)^*$
- 2. A hypothetical computer carries out calculations using 3-significant-digit base-10 floating point arithmetic. The rounding mode is round to the nearest floating point number and on a tie choose the mantissa whose least significant digit is even.
 - (i) Suppose the program
 - 1 input x
 - 2 input y
 - 3 print x
 - 4 print y
 - 5 print x+y

is executed and the output is

- 5.14
- 6.71
- 11.8

Find bounds on the absolute errors e_x , e_y , e_{prop} , e_{gen} and e_{tot} .

- (ii) Suppose the program
 - 1 input x
 - 2 input y
 - 3 print x
 - 4 print y
 - 5 print x*y

is executed and the output is

- 5.14
- 6.71
- 34.5

Find bounds on the relative errors \tilde{e}_x , \tilde{e}_y , \tilde{e}_{prop} , \tilde{e}_{gen} and \tilde{e}_{tot} .