Floating Point Arithmetic

1. Evaluate the following expressions using 3 -significant-digit base-10 floating point arithmetic. Round to the nearest floating point number and on a tie choose the mantissa whose least significant digit is even.
(i) $(3.14159)^{*}$
(ii) $6.19 \times 10^{2}+{ }^{*} 3.61 \times 10^{1}$
(iii) $1.23 \times 10^{3} * 9.54 \times 10^{-5}$
(iv) $3.52 \times 10^{3}+{ }^{*} 5.43 \times 10^{0}$
(v) $(2.71459)^{*}+{ }^{*}(-2.72687)^{*}$
2. A hypothetical computer carries out calculations using 3-significant-digit base-10 floating point arithmetic. The rounding mode is round to the nearest floating point number and on a tie choose the mantissa whose least significant digit is even.
(i) Suppose the program
input x
input y
print x
4 print y
5 print $\mathrm{x}+\mathrm{y}$
is executed and the output is
5.14
6.71
11.8

Find bounds on the absolute errors $e_{x}, e_{y}, e_{\mathrm{prop}}, e_{\text {gen }}$ and e_{tot}.
(ii) Suppose the program

1 input x
2 input y
3 print x
4 print y
5 print $\mathrm{x} * \mathrm{y}$
is executed and the output is
5.14
6.71
34.5

Find bounds on the relative errors $\tilde{e}_{x}, \tilde{e}_{y}, \tilde{e}_{\text {prop }}, \tilde{e}_{\text {gen }}$ and $\tilde{e}_{\text {tot }}$.

