Matrix Norms

1. Explain why it is important to use partial or full pivoting when implementing the Gauss-Jordan algorithm on a digital computer.
2. Explain the difference between propagated and generated error.
3. Let

$$
A=\left[\begin{array}{ccc}
-1 & 4 & 2 \\
-2 & 5 & 10 \\
-16 & 16 & -7
\end{array}\right]
$$

Please do all calculations by hand and show your work for full credit.
(i) Find $\|A\|_{1}$.
(ii) Find $\|A\|_{\infty}$.
4. Let

$$
B=\left[\begin{array}{cc}
0 & 2 \\
1 & -3
\end{array}\right]
$$

Please do all calculations by hand and show your work for full credit.
(i) Find $\|B\|_{F}$.
(ii) Find the singular values σ_{1} and σ_{2} of B.
(iii) Verify that $\|B\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$.
(iv) Find $\|B\|_{2}$.
5. Let

$$
C=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Use Matlab or Octave to compute spectral norm of C by entering the commands
$1 \mathrm{C}=[1,2,3 ; 4,5,6 ; 7,8,9]$
2 norm(C)
6. Find a 3×3 matrix that has the singular values $\sigma_{1}=1, \sigma_{2}=2$ and $\sigma_{3}=3$. Extra Credit or Math/CS 666: Find a non-diagonal matrix with these singular values.

