Math/CS 466 /666 Fall 2007 Lecture 03

Realistic Floating Point Data Types

A bit is a single binary digit—either 0 or 1. Bits are grouped into bytes. A byte is the
smallest addressible block of data in computer memory. Typically, a byte consists of 8
bits. Imagine a street lined with houses, where each house contains exactly eight people.
The people are the bits, the houses are the bytes, and the street addresses of the houses
are the memory locations of each byte.

The IEEE 754 standard defines four floaing point data types: single precision, ex-
tended single precision, double precision and extended double precision. These are sum-
marized in the following table:

type size mantissa exponent
single precision 4 bytes 23 bits 8 bits
extended single precision ~6 bytes 31 bits 11 bits
double precision 8 bytes 52 bits 11 bits

extended double precision 10 bytes 64 bits 15 bits

The computers widely available today contain FPUs which implement the IEEE 754
floating point standard in hardware. Computations in Matlab are done by default using
double precision floating point. Moreover, most general purpose programming languages
provide floating point data types which correspond directly to the those in the IEEE 754
standard and allow for efficient use of the FPU. One notable exception is the programming
language Maple which uses an arbitary precision base 10 floating point representation
that conforms to the IEEE 854 standard. When bugs were discovered in the FPU of
the early Intel Pentium processors, the makers of Maple could proudly say, our software
is unaffected. However, the relative speed disadvantage of implementing floating point
operations in software makes Maple unsuitable for many numeric applications.

Generally, we write non-zero floating point numbers in a way such that the first digit
appearing in the mantissa is non-zero. For example, in base ten we write

—0.03 = —3.0 x 1072, 230 = 2.3 x 102, 0.912 x 10° = 9.12 x 10%,
and so forth. When we do the same thing for base two floating point numbers
0.0010111 = 1.0111 x 2~

we note that the first non-zero digit is 1. Moreover, since the first digit of a normalized
base-two floating point number is always 1, then there is no need to store it. Such a
method of representing a binary floating point number is said to have a hidden bit. The
single precision and double precision formats of the IEEE 754 standard have hidden bits,
whereas the extended precision formats do not.

As a digression, let us write down the decimal equivalent of the base two floating point
number given above. This is

1 1 1
11 3
1.0111 x 2 = <1 + —22 + —23 + —24) X 272 = 0.1796875.

1

Math/CS 466 /666 Fall 2007 Lecture 03
Let * be an approximation of x € R. We say that x* is correct to n decimal places if
le] = |z* — x| < 0.5 x 107",

Similarly, we say z* is correct to n significant digits if

- r*—x
= |

‘ <5 x107".
x

Consider the approximation z* = 5.4321 of some number x € R. If * was properly
rounded, then it should be correct to 4 decimal places and 5 significant digits. We show
this intuition is consistent with the above definitions. First note that the only real numbers
which could be properly rounded to 5.4321 are x € (5.43205,5.43215). Therefore

le] < 0.00005 = 0.5 x 10~*
is consistent with * being correct to 4 decimal places. Similarly
€] < 0.00005/5.43205 < 0.9204628087 x 107° < 5 x 10™°

is consistent with z* being correct to 5 significant digits.

Generally, a base 10 floating point approximation with n decimal digits in the mantissa
will be accurate to n significant digits. Let us use this observation to estimate the number
of significant digits in the IEEE 754 single and double precision floating point data types.
A normalized mantissa consisting of n decimal digits can be chosen in 9 - 10"~ ! different
ways. The mantissa of a normalized single precision floating point number with a hidden
bit can be chosen in 223 different ways. Setting 9 - 10"~ ! ~ 223 yields

n ~ 23logp2+ 1 —log;, 9 ~ 6.969447391
or almost 7 significant digits. Similarly for double precision
n ~ 52log;y2+ 1 —log;y9 ~ 15.69931727

which is more than 15 significant digits.

Although Matlab uses double precision for all calculations, by default it prints only 5
significant digits for its output. The output format can be changed to show all 15 significant
digits by means of the format long command.

Matlab Example 4a
>> x=sqrt(2)
x = 1.4142
>> format long
>> x
x = 1.41421356237310

