Taylor Series and Newton's Method

Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listings and output. If you choose to work in a group of two, please turn in independently prepared reports.

1a. For $t \in [-1, 1)$ Taylor's theorem implies

$$\log(1-t) = -\left(\sum_{j=1}^{n} \frac{t^{j}}{j}\right) - \frac{1}{1-c}\left(\frac{t^{n+1}}{n+1}\right)$$

where c is an unknown constant between 0 and t. Let t = 0.5. Solve for n to ensure that the Taylor polynomial of degree n approximates $\log(0.5)$ with a relative error less than 5×10^{-16} .

1b. [Extra Credit and Math/CS 666] Show that

$$2^{n+1}(n+1) \ge 10^{16}$$

implies the relative error of the Taylor polynomial satisfies

$$|\operatorname{Rel}(T_n(x))| = \left|\frac{\log x - T_n(x)}{\log x}\right| \le 5 \times 10^{-16}$$

for all $x \in [0.5, 1.5]$.

- 1c. Write a program that uses a suitable Taylor polynomial $T_n(x)$ to approximate $\log x$ for $x \in [0.5, 1.5]$. Make your computation as accurate as possible. Compare your results to the builtin log function and compute the relative error for x = 0.5, x = 1.03 and x = 1.4.
- 1d. Use Newton's method to find $\sqrt{2}$ by solving $x^2 2 = 0$. Then use the identity $\log 2 = 2 \log \sqrt{2}$ to compute $\log 2$ as accurately as possible.
- 1e. For x > 0 let k be the unique integer such that $2^{k-1} < x \le 2^k$. Let $w = x/2^k$ so that $0.5 < w \le 1$. Use the identity $\log x = k \log 2 + \log w$ and parts 1c and 1d to create a program that computes $\log x$ for all values of x > 0. Compare your results to the builtin log function and compute the relative error for x = 17, x = 1083 and x = 0.19.