Taylor Series and Newton's Method

Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listings and output. If you choose to work in a group of two, please turn in independently prepared reports.

1a. For $t \in[-1,1)$ Taylor's theorem implies

$$
\log (1-t)=-\left(\sum_{j=1}^{n} \frac{t^{j}}{j}\right)-\frac{1}{1-c}\left(\frac{t^{n+1}}{n+1}\right)
$$

where c is an unknown constant between 0 and t. Let $t=0.5$. Solve for n to ensure that the Taylor polynomial of degree n approximates $\log (0.5)$ with a relative error less than 5×10^{-16}.
1b. [Extra Credit and Math/CS 666] Show that

$$
2^{n+1}(n+1) \geq 10^{16}
$$

implies the relative error of the Taylor polynomial satisfies

$$
\left|\operatorname{Rel}\left(T_{n}(x)\right)\right|=\left|\frac{\log x-T_{n}(x)}{\log x}\right| \leq 5 \times 10^{-16}
$$

for all $x \in[0.5,1.5]$.
1c. Write a program that uses a suitable Taylor polynomial $T_{n}(x)$ to approximate $\log x$ for $x \in[0.5,1.5]$. Make your computation as accurate as possible. Compare your results to the builtin log function and compute the relative error for $x=0.5, x=1.03$ and $x=1.4$.
1 d . Use Newton's method to find $\sqrt{2}$ by solving $x^{2}-2=0$. Then use the identity $\log 2=2 \log \sqrt{2}$ to compute $\log 2$ as accurately as possible.
1e. For $x>0$ let k be the unique integer such that $2^{k-1}<x \leq 2^{k}$. Let $w=x / 2^{k}$ so that $0.5<w \leq 1$. Use the identity $\log x=k \log 2+\log w$ and parts 1c and 1d to create a program that computes $\log x$ for all values of $x>0$. Compare your results to the builtin log function and compute the relative error for $x=17, x=1083$ and $x=0.19$.

