Numerical Quadrature

Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listings and output. If you choose to work in a group of two, you must turn in independently prepared reports. Do not work in a group larger than two.

1a. Write a program that computes integrals using Simpson's method. Test your program with $n=10$ to verify that you obtain

$$
\int_{1}^{5} \frac{1}{1+t^{2}} d t \approx 0.588037206324922
$$

1b. Let $g(t)=t^{p-1} e^{-t / 2}$. Find t_{0} such that $g\left(t_{0}\right)=\max \{g(t): t \geq 0\}$. Show for $M>t_{0}$ that

$$
E_{M}=\int_{M}^{\infty} t^{p-1} e^{-t} d t=\int_{M}^{\infty} g(t) e^{-t / 2} d t \leq 2 M^{p-1} e^{-M}
$$

Find a value of M that ensures $E_{M} \leq 5 \times 10^{-16}$ for all $p \in[1,2]$.
1c. Let S_{n} be the approximation of $\Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}$ given by computing

$$
\int_{0}^{M} t^{1 / 2} e^{-t} d t
$$

using Simpson's method with n subdivisions. Compute S_{n} for $n=2^{k}$ with $k=4, \ldots, 10$. Plot a graph of $\log \left|\Gamma(3 / 2)-S_{n}\right|$ versus $\log h$. What is the slope of the graph? What should the slope have been?
1d. Make the substitution $t=u^{5}$ in the integral of part 1c. Approximate this transformed integral as R_{n} using Simpson's method with $n=2^{k}$ subdivisions where $k=5, \ldots, 8$. Plot a graph of $\log \left|\Gamma(3 / 2)-R_{n}\right|$ versus $\log h$. What is the slope of the graph?
1e. [Extra Credit and for Math/CS 666] Analyse the results of 1c and 1d in terms of the error estimates for Simpson's method. Note that

$$
\frac{d^{4}}{d t^{4}}\left(t^{1 / 2} e^{-t}\right)
$$

is unbounded on $(0, M)$.

