
Math/CS 466/666 Programming Assignment 01

1a. For t ∈ [−1, 1) Taylor’s theorem implies

log(1 − t) = −
(

n
∑

j=1

tj

j

)

− 1

1− c

(tn+1

n + 1

)

where c is an unknown constant between 0 and t. Let t = 0.5. Solve for n to ensure
that the Taylor polynomial of degree n approximates log(0.5) with a relative error less
than 5 × 10−16.

Let y = log(0.5) and yA = Tn(0.5) be the approximation of y given by the Taylor polyno-
mial of degree n. Then for some c between 0 and 0.5 we obtain

|Rel(yA)| =
∣

∣

∣

log(0.5) − Tn(0.5)

log(0.5)

∣

∣

∣
=

0.5n+1

| log(0.5)|(1 − c)(n + 1)
≤ 0.5n

0.6931(n + 1)

since | log(0.5)| ≥ 0.6931. We now choose n to be the least integer such that

0.5n

0.6931(n + 1)
≤ 5 × 10−16

to obtain n that ensures the approximation meets the error tolerance. The Maple script

1 restart;

2 for n from 1 to 50

3 do

4 if 0.5^n/0.6931/(n+1)<= 5*10^(-16)

5 then

6 printf("The least n is n=%g\n",n);

7 break;

8 end

9 end;

with output

The least n is n=46

indicates the minimum value of n.

1

Math/CS 466/666 Programming Assignment 01

1b. [Extra Credit and Math/CS 666] Show that

2n+1(n + 1) ≥ 1016

implies the relative error of the Taylor polynomial satisfies

|Rel(Tn(1 − x))| =
∣

∣

∣

log x − Tn(1 − x)

log x

∣

∣

∣
≤ 5 × 10−16

for all x ∈ [0.5, 1.5].

Since
d2 log x

dx2
=

−1

x2
< 0 for all x > 0,

then logx is a concave function. Therefore | log x| ≥ |x − 1|2 log 1.5. This is further
illustrated in the graph

|x − 1|2 log 1.5
| log x|

x

y

1.41.210.80.6

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Since log 1.5 ≥ 0.4 we obtain for some c between −0.5 and 0.5 that

|Rel(Tn(x − 1))| =
|1 − x|n+1

| log(x)|(1 − c)(n + 1)
≤ |1 − x|n

| log 1.5|(n + 1)
≤ 2−n

0.4(n + 1)
.

Therefore, to ensure the error tolerance it is sufficient that

2−n

0.4(n + 1)
≤ 5 × 10−16

or equivalently
2n+1(n + 1) ≥ 1016.

Solving for the least n using a program similar to part 1a gives n = 47.

2

Math/CS 466/666 Programming Assignment 01

1c. Write a program that uses a suitable Taylor polynomial Tn(x) to approximate log x
for x ∈ [0.5, 1.5]. Make your computation as accurate as possible. Compare your
results to the builtin log function and compute the relative error for x = 0.5, x = 1.03
and x = 1.4.

We choose n = 47 so the Taylor polynomial will approximate the log function good to
within 16 significant digits. The C code

1 /* m1c.c -- Compute natural logarithm by Taylor series

2 By Eric Olson November 28, 2008 for Math/CS 466/666 */

3

4 #include <stdio.h>

5 #include <math.h>

6

7 const int n=47;

8 double tlog(double x){

9 double t=1.0-x;

10 double y=1.0/n;

11 int j;

12 for(j=n-1;j>=1;j--){

13 y=y*t+1.0/j;

14 }

15 return -t*y;

16 }

17

18 double X[]={0.5, 1.03, 1.4};

19 int main(){

20 int i;

21 printf("Math/CS 466/666 Programming Assignment 01 Part 1c.\n\n");

22 printf("Computing with n=%d...\n",n);

23 printf(" %5s %22s %22s %20s\n",

24 "x","log(x)","Tn(1-x)","Rel");

25 for(i=0;i<sizeof(X)/sizeof(double);i++){

26 double x=X[i];

27 double ya=tlog(x),y=log(x);

28 double rel=(y-ya)/y;

29 printf(" %5g %22.15e %22.15e %20.13e\n",

30 x,y,ya,rel);

31 }

32 return 0;

33 }

produces the output

Math/CS 466/666 Programming Assignment 01 Part 1c.

Computing with n=47...

x log(x) Tn(1-x) Rel

0.5 -6.931471805599453e-01 -6.931471805599452e-01 1.6017132519075e-16

1.03 2.955880224154443e-02 2.955880224154443e-02 1.1737440927418e-16

1.4 3.364722366212129e-01 3.364722366212129e-01 0.0000000000000e+00

The relative error is less than 5 × 10−16 for all tested values as expected.

3

Math/CS 466/666 Programming Assignment 01

1d. Use Newton’s method to find
√

2 by solving x2 − 2 = 0. Then use the identity
log 2 = 2 log

√
2 to compute log 2 as accurately as possible.

Newton’s iteration is

xn+1 = xn − x2
n − 2

2xn

=
x2

n + 2

2xn

and choose the starting value x0 = 1. The C code

1 /* m1d.c -- Compute log(2) using identitities

2 By Eric Olson November 28, 2008 for Math/CS 466/666 */

3

4 #include <stdio.h>

5 #include <math.h>

6

7 extern double tlog(double x);

8

9 double nsqrt2(){

10 double xn=1.0;

11 int n;

12 for(n=0;n<100;n++){

13 double xnp1=(xn*xn/2.0+1.0)/xn;

14 if(fabs(xnp1-xn)<5e-16) return xnp1;

15 xn=xnp1;

16 }

17 printf("nsqrt2: failed to converge!\n");

18 return xn;

19 }

20

21 int main(){

22 double s2=nsqrt2();

23 double rs2=(sqrt(2.0)-s2)/sqrt(2.0);

24 double l2=2.0*tlog(s2);

25 double rl2=(log(2.0)-l2)/log(2.0);

26 printf("Math/CS 466/666 Programming Assignment 01 Part 1d.\n\n");

27 printf(" sqrt(2) =%22.15e Rel =%22.15e\n",s2,rs2);

28 printf(" log(2) =%22.15e Rel =%22.15e\n",l2,rl2);

29 return 0;

30 }

produces the output

Math/CS 466/666 Programming Assignment 01 Part 1d.

sqrt(2) = 1.414213562373095e+00 Rel = 0.000000000000000e+00

log(2) = 6.931471805599455e-01 Rel =-3.203426503814918e-16

The square root
√

2 computed by Newtons method matches exactly the value returned by
the builtin function. The computation of log 2 has relative error is less that 5 × 10−16.

4

Math/CS 466/666 Programming Assignment 01

1e. For x > 0 let k be the unique integer such that 2k−1 < x ≤ 2k. Let w = x/2k so that
0.5 < w ≤ 1. Use the identity log x = k log 2 + log w and parts 1c and 1d to create
a program that computes logx for all values of x > 0. Compare your results to the
builtin log function and compute the relative error for x = 17, x = 1083 and x = 0.19.

In order to find k we can use the exponent already present in the IEEE 754 floating point
representation. Since bits 2–12 of a double precision variable contain the value of k +1023
we can find k easily. The following C code assumes a little endian ordering of the bit fields
as found on Intel microprocessors. Note that this code must be modified to work on big
endian machines such as IBM PowerPC and Silicon Graphics/MIPS architectures.

The C code

1 /* m1e.c -- Compute log(x) using identitities

2 By Eric Olson November 28, 2008 for Math/CS 466/666 */

3

4 #include <stdio.h>

5 #include <math.h>

6

7 extern double tlog(double x);

8 extern double nsqrt2();

9

10 typedef union {

11 double a;

12 struct {

13 char m2[6];

14 unsigned int m1:4;

15 unsigned int e:11;

16 unsigned int s:1;

17 } b;

18 } doublele;

19

20 /* Find k such that 2^(k-1)<x<=2^k and set w=x/2^k using specific

21 information about the little endian IEEE 754 representation */

22

23 static double s2;

24 double t2log(double x){

25 doublele w=(doublele)x;

26 int k=w.b.e-1023;

27 w.b.e=1023;

28 return 2*k*tlog(s2)+tlog(w.a);

29 }

30

31 double X[]={17, 1083, 0.19};

32 int main(){

33 double x=1.0/2;

34 int i;

35 s2=nsqrt2();

36 printf("Math/CS 466/666 Programming Assignment 01 Part 1e.\n\n");

37 printf(" %5s %22s %22s %20s\n",

38 "x","Builtin Log","My Log","Rel Error");

39 for(i=0;i<sizeof(X)/sizeof(double);i++){

40 double x=X[i];

41 double ya=t2log(x),y=log(x);

5

Math/CS 466/666 Programming Assignment 01

42 double rel=(y-ya)/y;

43 printf(" %5g %22.15e %22.15e %20.13e\n",

44 x,y,ya,rel);

45 }

46 return 0;

47 }

produces the output

Math/CS 466/666 Programming Assignment 01 Part 1e.

x Builtin Log My Log Rel Error

17 2.833213344056216e+00 2.833213344056217e+00 -3.1348801231769e-16

1083 6.987490247000991e+00 6.987490247000992e+00 -2.5421958050856e-16

0.19 -1.660731206821651e+00 -1.660731206821651e+00 -2.6740583185642e-16

The values computed with the Taylor series agree with the builtin log function to 16
significant digits.

6

