Math/CS 466/666 Fall 2008 Exam 1

1. The Matlab computer codes
```
function r=qeq1(a,b,c)
    if b<0
            r1=(-b+sqrt (b^2-4*a*c))/(2*a);
            r2=(2*c)/(-b+sqrt(b^2-4*a*c));
        else
            r1=(2*c)/(-b-sqrt (b^2-4*a*c));
            r2=(-b-sqrt (b~2-4*a*c))/(2*a);
        end
        r=[r1,r2];
```

and

```
function r=qeq2(a,b,c)
    if b>0
            r1=(-b+sqrt(b^2-4*a*c))/(2*a);
            r2=(2*c)/(-b+sqrt (b^2-4*a*c));
    else
        r1=(2*c)/ (-b-sqrt (b^2-4*a*c));
        r2=(-b-sqrt (b^2-4*a*c))/(2*a);
    end
    r=[r1,r2];
```

both compute the roots of the quadratic equation $a x^{2}+b x+c=0$.
(i) Which routine will result in a computation with less rounding error?
(A) The routine qeq1.
(B) The routine qeq2.
(C) There is no difference.
(ii) Explain your answer to the above question.

Math/CS 466/666 Fall 2008 Exam 1
2. Consider the table of divided differences for the function $f(x)=e^{x}$ given by

x_{n}	$f\left(x_{n}\right)$	$f\left(x_{n}, x_{n+1}\right)$	$f\left(x_{n}, \ldots, x_{n+2}\right)$	$f\left(x_{n}, \ldots, x_{n+3}\right)$
0.0	1.00000	1.10700	0.63480	0.244688
0.2	1.22140	1.42440	0.83055	0.314238
0.5	1.64872	1.92273	1.08194	
0.8	2.22554	2.46370		
1.0	2.71828			

Find the interpolating polynomial passing through the points $(0.2,1.22140),(0.5,1.64872),(0.8,2.22554),(1.0,2.71828)$.
3. Find the Taylor polynomial of degree 4 for the function $f(x)=1 /(2+x)$ expanded around $x_{0}=0$.

Math/CS 466/666 Fall 2008 Exam 1
4. Fill in the blanks in the following statement of Theorem 4.2.1 on the error in polynomimal interpolation.
Theorem 4.2.1. Let $n \geq 0$, let $f(x)$ have $n+1$ continuous derivatives on $[a, b]$, and let $x_{0}, x_{1}, \ldots, x_{n}$ be distinct node points in $[a, b]$. Let $p_{n}(x)$ be the unique interpolating polynomial of degree less than or equal n passing through the points $\left(x_{k}, f\left(x_{k}\right)\right)$ for $k=0,1, \ldots, n$. Then

$$
f(x)-p_{n}(x)=\square
$$

for $a \leq x \leq b$, where c_{x} is an unknown point between the minimum and maximum of $x_{0}, x_{1}, \ldots, x_{n}$, and x.
5. Consider the interpolating polynomial $p_{4}(x)$ of degree 4 passing through the points $(x, \exp (x))$ where $x=0.0,0.2,0.5,0.8,1.0$. Let

$$
M=\max _{x \in[0,1]}|x(x-0.2)(x-0.5)(x-0.8)(x-1)| \approx 0.0026735
$$

Use Theorem 4.2.1 and the value of M given above to find a bound for $\exp (x)-p_{4}(x)$ on the interval $[0,1]$.
6. Bound the error in the approximation $\cos (x)=1-\frac{1}{2} x^{2}$ for $-0.2 \leq x \leq 0.2$.
7. Given the true value x_{T} with an approximation x_{A} define the following:
(i) The absolute error $\operatorname{Error}\left(x_{A}\right)$
(ii) The relative error $\operatorname{Rel}\left(x_{A}\right)$
8. Let $x_{A}=0.08$ be an approximation of x_{T}. If $\left|\operatorname{Rel}\left(x_{A}\right)\right| \leq 0.05$ what is the largest number x_{T} could have been?
9. Let x_{A} and y_{A} be approximations of x_{T} and y_{T} with absolute errors $\operatorname{Error}\left(x_{A}\right)=$ 0.03 and $\operatorname{Error}\left(y_{A}\right)=0.04$. Assuming exact arithemetic, what is $\operatorname{Error}\left(x_{A}+y_{A}\right)$?

Math/CS 466/666 Fall 2008 Exam 1
10. Write pseudocode for the following:
(i) Newton's method to find an approximation x_{A} with $\left|\operatorname{Error}\left(x_{A}\right)\right|<\epsilon$ of a root of $f(x)$ with the starting guess x_{0}.
(ii) The secant method to find an approximation x_{A} with $\left|\operatorname{Error}\left(x_{A}\right)\right|<\epsilon$ of a root of $f(x)$ with the starting guesses x_{0} and x_{1}.
11. Compare Newton's method to the secant method method and state the advantages and disadvantages of each method.

