1. The MATLAB computer codes

```
1 function r=qeq1(a,b,c)
           if b<0
     \mathbf{2}
                r1=(-b+sqrt(b^2-4*a*c))/(2*a);
     3
                r2=(2*c)/(-b+sqrt(b^2-4*a*c));
     4
           else
     \mathbf{5}
                r1=(2*c)/(-b-sqrt(b^2-4*a*c));
     6
                r2=(-b-sqrt(b^2-4*a*c))/(2*a);
     7
           end
     8
           r=[r1,r2];
     9
and
     1 function r=qeq2(a,b,c)
           if b>0
     2
     3
```

```
3 r1=(-b+sqrt(b^2-4*a*c))/(2*a);
4 r2=(2*c)/(-b+sqrt(b^2-4*a*c));
5 else
6 r1=(2*c)/(-b-sqrt(b^2-4*a*c));
7 r2=(-b-sqrt(b^2-4*a*c))/(2*a);
8 end
9 r=[r1,r2];
```

both compute the roots of the quadratic equation $ax^2 + bx + c = 0$.

- (i) Which routine will result in a computation with less rounding error?
 - (A) The routine qeq1.
 - (B) The routine qeq2.
 - (C) There is no difference.
- (ii) Explain your answer to the above question.

Math/CS 466/666 Fall 2008 Exam 1 $\,$

x_n	$f(x_n)$	$f(x_n, x_{n+1})$	$f(x_n,\ldots,x_{n+2})$	$f(x_n,\ldots,x_{n+3})$
0.0	1.00000	1.10700	0.63480	0.244688
0.2	1.22140	1.42440	0.83055	0.314238
0.5	1.64872	1.92273	1.08194	
0.8	2.22554	2.46370		
1.0	2.71828			

2. Consider the table of divided differences for the function $f(x) = e^x$ given by

Find the interpolating polynomial passing through the points

(0.2, 1.22140), (0.5, 1.64872), (0.8, 2.22554), (1.0, 2.71828).

3. Find the Taylor polynomial of degree 4 for the function f(x) = 1/(2+x) expanded around $x_0 = 0$.

4. Fill in the blanks in the following statement of Theorem 4.2.1 on the error in polynomial interpolation.

Theorem 4.2.1. Let $n \ge 0$, let f(x) have n + 1 continuous derivatives on [a, b], and let x_0, x_1, \ldots, x_n be distinct node points in [a, b]. Let $p_n(x)$ be the unique interpolating polynomial of degree less than or equal n passing through the points $(x_k, f(x_k))$ for $k = 0, 1, \ldots, n$. Then

$$f(x) - p_n(x) =$$

for $a \leq x \leq b$, where c_x is an unknown point between the minimum and maximum of x_0, x_1, \ldots, x_n , and x.

5. Consider the interpolating polynomial $p_4(x)$ of degree 4 passing through the points $(x, \exp(x))$ where x = 0.0, 0.2, 0.5, 0.8, 1.0. Let

$$M = \max_{x \in [0,1]} |x(x-0.2)(x-0.5)(x-0.8)(x-1)| \approx 0.0026735.$$

Use Theorem 4.2.1 and the value of M given above to find a bound for $\exp(x) - p_4(x)$ on the interval [0, 1].

6. Bound the error in the approximation $\cos(x) = 1 - \frac{1}{2}x^2$ for $-0.2 \le x \le 0.2$.

Math/CS 466/666 Fall 2008 Exam 1

- 7. Given the true value x_T with an approximation x_A define the following:
 - (i) The absolute error $\operatorname{Error}(x_A)$

(ii) The relative error $\operatorname{Rel}(x_A)$

8. Let $x_A = 0.08$ be an approximation of x_T . If $|\operatorname{Rel}(x_A)| \leq 0.05$ what is the largest number x_T could have been?

9. Let x_A and y_A be approximations of x_T and y_T with absolute errors $\operatorname{Error}(x_A) = 0.03$ and $\operatorname{Error}(y_A) = 0.04$. Assuming exact arithemetic, what is $\operatorname{Error}(x_A + y_A)$?

Math/CS 466/666 Fall 2008 Exam 1

- **10.** Write pseudocode for the following:
 - (i) Newton's method to find an approximation x_A with $|\operatorname{Error}(x_A)| < \epsilon$ of a root of f(x) with the starting guess x_0 .

(ii) The secant method to find an approximation x_A with $|\operatorname{Error}(x_A)| < \epsilon$ of a root of f(x) with the starting guesses x_0 and x_1 .

11. Compare Newton's method to the secant method method and state the advantages and disadvantages of each method.