Math/CS 466/666 Fall 2008 Exam 2 $\,$

1. Write psuedocode to efficiently evaluate the polynomial

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

given a value of x and an array a_i of coefficients as inputs.

2. Consider using the trapeziod method and Simpson's method to approximate

$$\int_{1}^{2} \frac{1}{t} dt$$

with h = (2-1)/n where n = 20. Without actually performing the computation, tell which method will yield a better approximation? Explain why in as mathematically precise way as possible?

Math/CS 466/666 Fall 2008 Exam 2 $\,$

3. The nodal points x_i and the weights w_i for the Gauss quadrature methods with n = 2, 3 and 4 are given in the table

n	x_i	w_i
2	± 0.5773502692	1.0
3	± 0.7745966692	0.555555556
	0.0	0.8888888889
4	± 0.8611363116	0.3478548451
	± 0.3399810436	0.6521451549

Make the substitution x = 2t - 3 to rewrite the integral

$$\int_{1}^{2} \frac{1}{t} dt \quad \text{in the form} \quad \int_{-1}^{1} f(x) dx$$

and then use the Gauss quadrature method with n = 3 to approximate this integral.

- 4. The Gauss quadrature formula with n = 7 is exact for all polynomials of degree less than or equal at most
 - (A) 7
 - (B) 13
 - (C) 14
 - (D) 27
 - (E) none of these.

Math/CS 466/666 Fall 2008 Exam 2 $\,$

5. Use Taylor's theorem to estimate the mathematical error in the approximation

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}.$$

6. Explain how roundoff error implies a minimum optimal size for h and how many significant digits are lost by the subtraction of two nearly equal numbers in the numerator of the above formula when performing numerical differentiation.

Math/CS 466/666 Fall 2008 Exam 2

7. Let f be a differentiable function defined on **R** with root α . Given an initial guess of x_0 state Newton's method for approximating α .

(i) Suppose f is twice continuously differentiable and $f'(\alpha) \neq 0$. Show that Newton's method is quadratically convergent.

(ii) Suppose that α is a root of multiplicity 3 so that $f'(\alpha) = 0$ and $f''(\alpha) = 0$. In this case the quotients

$$\lambda_n = \frac{x_{n+1} - x_n}{x_n - x_{n-1}}$$

will converge to

- (A) 1/2
- (B) 2/3
- (C) 1/3
- (D) 3/2
- (E) none of these.