Math/CS 466/666 Fall 2008 Exam 2

1. Write psuedocode to efficiently evaluate the polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

given a value of x and an array a_{i} of coefficients as inputs.
2. Consider using the trapeziod method and Simpson's method to approximate

$$
\int_{1}^{2} \frac{1}{t} d t
$$

with $h=(2-1) / n$ where $n=20$. Without actually performing the computation, tell which method will yeild a better approximation? Explain why in as mathematically precise way as possible?

Math/CS 466/666 Fall 2008 Exam 2
3. The nodal points x_{i} and the weights w_{i} for the Gauss quadrature methods with $n=2,3$ and 4 are given in the table

n	x_{i}	w_{i}
2	± 0.5773502692	1.0
3	± 0.7745966692	0.5555555556
	0.0	0.8888888889
4	± 0.8611363116	0.3478548451
	± 0.3399810436	0.6521451549

Make the substitution $x=2 t-3$ to rewrite the integral

$$
\int_{1}^{2} \frac{1}{t} d t \text { in the form } \int_{-1}^{1} f(x) d x
$$

and then use the Gauss quadrature method with $n=3$ to approximate this integral.
4. The Gauss quadrature formula with $n=7$ is exact for all polynomials of degree less than or equal at most
(A) 7
(B) 13
(C) 14
(D) 27
(E) none of these.

Math/CS 466/666 Fall 2008 Exam 2
5. Use Taylor's theorem to estimate the mathematical error in the approximation

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

6. Explain how roundoff error implies a minimum optimal size for h and how many significant digits are lost by the subtraction of two nearly equal numbers in the numerator of the above formula when performing numerical differentiation.
7. Let f be a differentiable function defined on \mathbf{R} with root α. Given an initial guess of x_{0} state Newton's method for approximating α.
(i) Suppose f is twice continuously differentiable and $f^{\prime}(\alpha) \neq 0$. Show that Newton's method is quadratically convergent.
(ii) Suppose that α is a root of multiplicity 3 so that $f^{\prime}(\alpha)=0$ and $f^{\prime \prime}(\alpha)=0$. In this case the quotients

$$
\lambda_{n}=\frac{x_{n+1}-x_{n}}{x_{n}-x_{n-1}}
$$

will converge to
(A) $1 / 2$
(B) $2 / 3$
(C) $1 / 3$
(D) $3 / 2$
(E) none of these.

