Math/CS 466/666 Fall 2007 Quiz 1

1. The computer codes

$$
\begin{aligned}
& t=a+b \\
& r 1=t+c
\end{aligned}
$$

and

$$
\begin{aligned}
& t=b+c \\
& r 2=a+t
\end{aligned}
$$

are mathematically equivalent and, if executed on a modern digital computer that implements the IEEE 754 standard for floating point arithmetic, will always result in the same value being assigned to the variables r1 and r2.
(A) True
(B) False
2. Bound the error in the approximation $\cos (x)=1-\frac{1}{2} x^{2}$ for $-0.2 \leq x \leq 0.2$.

Math/CS 466/666 Fall 2007 Quiz 1
3. About how many decimal digits of precision do IEEE 754 single precision 4-byte floating point numbers have?
(A) 4
(B) 7
(C) 15
(D) 64
4. About how many decimal digits of precision do IEEE 754 double precision 8 -byte floating point numbers have?
(A) 4
(B) 7
(C) 15
(D) 64
5. Given $p(x)=4.5 x^{4}-8.9 x^{3}+5.1 x^{2}+2.3 x+1.8$ explain how to calculate $p(1.3)$ using no more than 4 multiplications and 4 additions. Be as specific as possible.

Math/CS 466/666 Fall 2007 Quiz 1
6. Give a brief explanation of the following sources of error:
(i) Modeling Errors.
(ii) Physical Measurement Errors.
(iii) Machine Representation and Arithemetic Errors.
(iv) Mathematical Approximation Errors.

Math/CS 466/666 Fall 2007 Quiz 1
7. Find the 4th degree Taylor's polynomal for the function $f(x)=\frac{\sin (x)}{1-x}$.
8. Taylor's theorem states that $e^{x}=T_{n}(x)+R_{n}(x)$ where

$$
T_{n}(x)=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!} \quad \text { and } \quad R_{n}(x)=\frac{x^{n+1}}{(n+1)!} e^{c}
$$

with c between 0 and x. Use the remainder term $R_{n}(x)$ to find a value of n that guarantees $\left|T_{n}(1 / 2)-\sqrt{e}\right| \leq 10^{-7}$.

