MATH/CS 466/666 Fall 2008 Quiz 2

1. Calculate the error and relative error in the approximation $x_A \approx x_T$ where $x_T = 0.028254$ and $x_A = 0.028271$.

2. For $x \in (-1, 1)$ the functions defined by

$$f(x) = (1+x)^{1/3} - 1$$

and

$$g(x) = \frac{x}{\left((1+x)^{1/3}+1\right)(1+x)^{1/3}+1}$$

are mathematically equivalent. If x is very close to zero, which function will evaluate more accuratly on a digital computer?

- (A) f(x)
- (B) g(x)
- (C) There is no difference.
- **3.** Let $x_A = 0.06$ by an approximation of x_T . If $|\text{Error}(\mathbf{x}_A)| \le 0.003$ what is largest number that x_T could have been?

Math/CS 466/666 Fall 2008 Quiz 2 $\,$

4. Let x_A and y_A be approximations of x_T and y_T with relative errors $\text{Rel}(x_A) = 0.03$ and $\text{Rel}(y_A) = 0.04$. Assuming exact arithemetic, what is $\text{Rel}(x_A y_A)$?

5. The computer codes

```
1 s=0.0
2 for n from 1 to 1000
3 do
4 s=s+1.0/n
5 end
```

and

```
1 s=0.0

2 for n from 1 to 1000

3 do

4 s=s+1.0/(1001-n)

5 end
```

both computes the sum $\sum_{n=1}^{1000} \frac{1}{n}$ as **s**. Which one computes **s** more accurately?

- (A) The first code..
- (B) The second code.
- (C) There is no difference.

Math/CS 466/666 Fall 2008 Quiz 2

- **6.** Suppose f is continuously differentiable, $f(\alpha) = 0$ and $f'(\alpha) \neq 0$.
 - (i) Newton's method for approximating α given an initial guess x_0 is

(A)
$$x_{n+1} = x_n + f(x_n)/f'(x_n)$$

- (B) $x_{n+1} = x_n f(x_n)/f'(x_n)$
- (C) $x_{n+1} = x_n + f'(x_n)/f(x_n)$
- (D) $x_{n+1} = x_n f'(x_n)/f(x_n)$
- (E) none of these
- (ii) Show Newton's method converges quadratically in a neighborhood of α .

- 7. Compare Newton's method to the bisection method.
 - (i) State the advantages and disadvantages of each method.
 - (ii) Give an example where the bisection method would be preferred.
 - (iii) Give and example where Newton's method would be preferred.