1. Calculate the error and relative error in the approximation $x_{A} \approx x_{T}$ where $x_{T}=$ 0.028254 and $x_{A}=0.028271$.
2. For $x \in(-1,1)$ the functions defined by

$$
f(x)=(1+x)^{1 / 3}-1
$$

and

$$
g(x)=\frac{x}{\left((1+x)^{1 / 3}+1\right)(1+x)^{1 / 3}+1}
$$

are mathematically equivalent. If x is very close to zero, which function will evaluate more accuratly on a digital computer?
(A) $\quad f(x)$
(B) $g(x)$
(C) There is no difference.
3. Let $x_{A}=0.06$ by an approximation of x_{T}. If $\left|\operatorname{Error}\left(\mathrm{x}_{\mathrm{A}}\right)\right| \leq 0.003$ what is largest number that x_{T} could have been?

Math/CS 466/666 Fall 2008 Quiz 2
4. Let x_{A} and y_{A} be approximations of x_{T} and y_{T} with relative errors $\operatorname{Rel}\left(x_{A}\right)=0.03$ and $\operatorname{Rel}\left(y_{A}\right)=0.04$. Assuming exact arithemetic, what is $\operatorname{Rel}\left(x_{A} y_{A}\right)$?
5. The computer codes

```
    1 s=0.0
    2 for n from 1 to 1000
    do
    4 s=s+1.0/n
end
```

and
$1 \mathrm{~s}=0.0$
for n from 1 to 1000
do
$4 \quad s=s+1.0 /(1001-n)$
5 end
both computes the sum $\sum_{n=1}^{1000} \frac{1}{n}$ as s . Which one computes s more accurately?
(A) The first code..
(B) The second code.
(C) There is no difference.

Math/CS 466/666 Fall 2008 Quiz 2
6. Suppose f is continuously differentiable, $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$.
(i) Newton's method for approximating α given an initial guess x_{0} is
(A) $x_{n+1}=x_{n}+f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
(B) $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
(C) $x_{n+1}=x_{n}+f^{\prime}\left(x_{n}\right) / f\left(x_{n}\right)$
(D) $\quad x_{n+1}=x_{n}-f^{\prime}\left(x_{n}\right) / f\left(x_{n}\right)$
(E) none of these
(ii) Show Newton's method converges quadratically in a neighborhood of α.
7. Compare Newton's method to the bisection method.
(i) State the advantages and disadvantages of each method.
(ii) Give an example where the bisection method would be preferred.
(iii) Give and example where Newton's method would be preferred.

