Math/CS 466/666 Fall 2008 Quiz 4 $\,$

1. Let A be a invertible $n \times n$ matrix. Define cond(A) the condition number of A.

2. Let x_a be an approximation of the solution x to Ax = b where A is an $n \times n$ matrix and b is a vector of length n. Define $r = b - Ax_a$. Show that

$$\frac{\|x - x_a\|}{\|x\|} \le \text{cond}(A) \frac{\|r\|}{\|b\|}.$$

3. Give a simple formula for the sum $\sum_{k=1}^{n-1} k^2$.

4. Let A and B be $n \times n$ matrices with entries a_{ij} and b_{ij} respectively. Define C = AB. The standard way of computing the elements c_{ij} of C is

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

How many multiplications does it take to fully compute C in this way?

5. Let A be an $n \times n$ matrix that can be written as A = LU where L is lower triangular and U is upper triangular. Explain in details the total number of multiplications and divisions generally needed to find L and U using Gauss-Jordan elimination.

Math/CS 466/666 Fall 2008 Quiz 4

6. The nodal points x_i and the weights w_i for the Gauss quadrature methods with n = 2, 3 and 4 are given in the table

n	x_i	w_i
2	± 0.5773502692	1.0
3	± 0.7745966692	0.555555556
	0.0	0.8888888889
4	± 0.8611363116	0.3478548451
	± 0.3399810436	0.6521451549

Make the substitution x = (t - 3)/2 to rewrite the integral

$$\int_{1}^{5} \log(t) dt \quad \text{in the form} \quad \int_{-1}^{1} f(x) dx$$

and then use the Gauss quadrature method with n = 3 to approximate this integral.

- 7. The Gauss quadrature formula with n = 4 is exact for all polynomials of degree less than or equal at most
 - (A) 7
 - (B) 13
 - (C) 14
 - (D) 27
 - (E) none of these.