1. Let A be a invertible $n \times n$ matrix. Define $\operatorname{cond}(A)$ the condition number of A.
2. Let x_{a} be an approximation of the solution x to $A x=b$ where A is an $n \times n$ matrix and b is a vector of length n. Define $r=b-A x_{a}$. Show that

$$
\frac{\left\|x-x_{a}\right\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|r\|}{\|b\|}
$$

3. Give a simple formula for the sum $\sum_{k=1}^{n-1} k^{2}$.

Math/CS 466/666 Fall 2008 Quiz 4
4. Let A and B be $n \times n$ matrices with entries $a_{i j}$ and $b_{i j}$ respectively. Define $C=A B$. The standard way of computing the elements $c_{i j}$ of C is

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

How many multiplications does it take to fully compute C in this way?
5. Let A be an $n \times n$ matrix that can be written as $A=L U$ where L is lower triangular and U is upper triangular. Explain in details the total number of multiplications and divisions generally needed to find L and U using Gauss-Jordan elimination.

Math/CS 466/666 Fall 2008 Quiz 4
6. The nodal points x_{i} and the weights w_{i} for the Gauss quadrature methods with $n=2,3$ and 4 are given in the table

n	x_{i}	w_{i}
2	± 0.5773502692	1.0
3	± 0.7745966692	0.5555555556
	0.0	0.8888888889
4	± 0.8611363116	0.3478548451
	± 0.3399810436	0.6521451549

Make the substitution $x=(t-3) / 2$ to rewrite the integral

$$
\int_{1}^{5} \log (t) d t \text { in the form } \int_{-1}^{1} f(x) d x
$$

and then use the Gauss quadrature method with $n=3$ to approximate this integral.
7. The Gauss quadrature formula with $n=4$ is exact for all polynomials of degree less than or equal at most
(A) 7
(B) 13
(C) 14
(D) 27
(E) none of these.

