Math/CS 466/666 Homework 1

Vectors, Matrices and Condition Number

1. Consider the vectors and matrices

$$
u=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ccc}
1 & -1 & 3 \\
4 & 0 & 2 \\
-1 & 2 & 0
\end{array}\right]
$$

(i) Find $\|u\|_{1}$ and $\|A\|_{1}$ and verify that $\|A u\|_{1} \leq\|A\|_{1}\|u\|_{1}$.
(ii) Find $\|u\|_{\infty}$ and $\|A\|_{\infty}$ and verify that $\|A u\|_{\infty} \leq\|A\|_{\infty}\|u\|_{\infty}$.
(iii) Compute $A^{\dagger} A$.
(iv) Prove the eigenvalues of $A^{\dagger} A$ are real and non-negative.
(v) Use the power method to find the largest eigenvalue λ_{1} such that $A^{\dagger} A x=\lambda_{1} x$ for some non-zero eigenvector x.
(vi) Find $\|u\|_{2}$ and compute $\|A\|_{2}$ using the formula $\|A\|_{2}=\sqrt{\lambda_{1}}$.
(vii) Verify that $\|A u\|_{2} \leq\|A\|_{2}\|u\|_{2}$.

Math/CS 466 students solve either part (viii) or (ix) and treat the other part as extra credit; Math/CS 666 students solve both parts.
(viii) Use the inverse power method to find the smallest eigenvalue λ_{3} of $A^{\dagger} A$.
(ix) Prove or disprove that the condition number

$$
\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\sqrt{\lambda_{1} / \lambda_{3}} .
$$

