Vectors, Matrices and Condition Number

1. Consider the vectors and matrices

$$u = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & -1 & 3\\4 & 0 & 2\\-1 & 2 & 0 \end{bmatrix}$$

- (i) Find $||u||_1$ and $||A||_1$ and verify that $||Au||_1 \le ||A||_1 ||u||_1$.
- (ii) Find $||u||_{\infty}$ and $||A||_{\infty}$ and verify that $||Au||_{\infty} \le ||A||_{\infty} ||u||_{\infty}$.
- (iii) Compute $A^{\dagger}A$.
- (iv) Prove the eigenvalues of $A^{\dagger}A$ are real and non-negative.
- (v) Use the power method to find the largest eigenvalue λ_1 such that $A^{\dagger}Ax = \lambda_1 x$ for some non-zero eigenvector x.
- (vi) Find $||u||_2$ and compute $||A||_2$ using the formula $||A||_2 = \sqrt{\lambda_1}$.
- (vii) Verify that $||Au||_2 \le ||A||_2 ||u||_2$.

Math/CS 466 students solve either part (viii) or (ix) and treat the other part as extra credit; Math/CS 666 students solve both parts.

- (viii) Use the inverse power method to find the smallest eigenvalue λ_3 of $A^{\dagger}A$.
 - (ix) Prove or disprove that the condition number

$$\kappa_2(A) = ||A||_2 ||A^{-1}||_2 = \sqrt{\lambda_1/\lambda_3}.$$