1. Let $A \in \mathbf{R}^{d \times d}$ and $x \in \mathbf{R}^d$. Define the vector and corresponding matrix norms as

$$||x|| = \sum_{i=1}^{d} x_i^2$$
 and $||A|| = \max\{ ||Ax|| : ||x|| = 1 \}.$

Prove that $||A|| = \rho(B)^{1/2}$ where $B = A^t A$ and $\rho(B) = \max\{|\lambda| : \det(B - \lambda I) = 0\}$.

Since B is real and symmetric, the spectral theorem implies there is an orthonormal basis ξ_i of \mathbf{R}^d consisting of eigenvectors x_i with eigenvalues λ_i such that

$$B\xi_i = \lambda_i \xi_i$$
 for $i = 1, \dots, d$ and $\xi_i \cdot \xi_j = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j. \end{cases}$

Let $x \in \mathbf{R}^d$. Since the ξ_i form a basis, then there exists $c_i \in \mathbf{R}$ such that

$$x = \sum_{i=1}^{d} c_i \xi_i.$$

Since the ξ_i are orthonormal, then

$$||x||^2 = x \cdot x = \left(\sum_{i=1}^d c_i \xi_i\right) \cdot \left(\sum_{j=1}^d c_j \xi_j\right) = \sum_{i=1}^d \sum_{j=1}^d c_i c_j \xi_i \cdot \xi_j = \sum_{i=1}^d c_i^2.$$

Moreover,

$$||Ax||^{2} = Ax \cdot Ax = A^{t}Ax \cdot x = Bx \cdot x = B\left(\sum_{i=1}^{d} c_{i}\xi_{i}\right) \cdot \left(\sum_{j=1}^{d} c_{j}\xi_{j}\right)$$
$$= \left(\sum_{i=1}^{d} c_{i}B\xi_{i}\right) \cdot \left(\sum_{j=1}^{d} c_{j}\xi_{j}\right) = \left(\sum_{i=1}^{d} c_{i}\lambda_{i}\xi_{i}\right) \cdot \left(\sum_{j=1}^{d} c_{j}\xi_{j}\right) = \sum_{i=1}^{d} \lambda_{i}c_{i}^{2}.$$

Since $||Ax||^2 \ge 0$ and the c_i 's are arbitrary, then the above equality implies $\lambda_i \ge 0$. Thus, we may assume that the λ_i 's have been ordered such that

$$0 \le \lambda_1 \le \cdots \le \lambda_d$$
.

Now

$$||A|| = \max\{ ||Ax||^2 : ||x||^2 = 1 \}^{1/2} = \max\{ \sum_{i=1}^d \lambda_i c_i^2 : \sum_{i=1}^d c_i^2 = 1. \}^{1/2}.$$

This shows that ||A|| is the maximum over all weighted averages of the λ_i 's. Since the weighted average is never greater than the maximum, it follows that

$$||A|| \le \max\{\lambda_i : i = 1, \dots, d\}^{1/2}.$$

Moreover, since the maximum is obtained by choosing $c_i = 0$ for i < d and $c_d = 1$ we obtain

$$||A|| = \max\{\lambda_i : i = 1, \dots, d\}^{1/2} = \max\{|\lambda_i| : i = 1, \dots, d\}^{1/2}$$
$$= \max\{|\lambda| : \det(B - \lambda I) = 0\}^{1/2} = \rho(B)^{1/2}.$$

- **2.** Let $B \in \mathbf{R}^{d \times d}$ be a positive symmetric matrix.
 - (i) State the power method for finding the spectral radius $\rho(B)$

Let $y_0 \in \mathbf{R}^d$ be chosen so that it doesn't lie in any strict eigen-subspace of B. Define

$$x_k = y_k / ||y_k||$$
 and $y_{k+1} = Bx_k$ for $k = 0, 1, 2, \dots$

Then $y_{k+1} \cdot x_k \to \rho(B)$ as $k \to \infty$.

(ii) Prove that the power method converges to the spectral radius.

Let the eigenvectors ξ_i and eigenvalues λ_i of B be given as in part (i). Define p such that

$$\lambda_i < \lambda_d$$
 for $i < p$ and $\lambda_i = \lambda_d$ for $i \ge p$.

Choose $y_0 \in \mathbf{R}^d$ at random. With probability 1 it follows that y_0 is not in a strict eigensubspace of B. Therefore

$$y_0 = \sum_{i=1}^d c_i \xi_i$$
 where $c_i \neq 0$ for $i = 1, \dots, d$.

By definition $x_0 = y_0/||y_0||$ and consequently

$$y_1 = Bx_0 = B\sum_{i=1}^d c_i \xi_i / ||y_0|| = \sum_{i=1}^d c_i B\xi_i / ||y_0|| = \sum_{i=1}^d c_i \lambda_i \xi_i / ||y_0||.$$

Therefore

$$x_1 = y_1 / ||y_1|| = \sum_{i=1}^d c_i \lambda_i \xi_i / ||\sum_{i=1}^d c_i \lambda_i \xi_i||.$$

By induction, it follows that

$$x_k = \sum_{i=1}^d c_i \lambda_i^k \xi_i / \left\| \sum_{i=1}^d c_i \lambda_i^k \xi_i \right\|$$
 and $y_{k+1} = \sum_{i=1}^d c_i \lambda_i^{k+1} \xi_i / \left\| \sum_{i=1}^d c_i \lambda_i^k \xi_i \right\|$.

Thus

$$y_{k+1} \cdot x_k = \frac{\sum_{i=1}^d c_i^2 \lambda_i^{2k+1}}{\sum_{i=1}^d c_i^2 \lambda_i^{2k}} = \frac{\sum_{i=1}^d c_i^2 \lambda_i (\lambda_i / \lambda_d)^{2k}}{\sum_{i=1}^d c_i^2 (\lambda_i / \lambda_d)^{2k}}.$$

By the definition of p we have that

$$\lim_{k \to \infty} (\lambda_i / \lambda_d)^{2k} = \begin{cases} 0 & \text{for } i$$

Consequently

$$y_{k+1} \cdot x_k \to \frac{\sum_{i=p}^d c_i^2 \lambda_d}{\sum_{i=p}^d c_i^2} = \lambda_d = \rho(B)$$
 as $k \to \infty$.