
Math/CS 466/666: Shifted Inverse Power Method Lab

Let A be a n×n matrix. The shifted inverse power method is an iterative way to compute
the eigenvalue of A closest to a given complex number. This method is a refinement of the
power method which we used to find the matrix norm ∥A∥2. Recall that ∥A∥2 is equal to
the square root of the largest eigenvalue of B = ATA. In this case we proved

max
{
λ : λ is the largest eigenvalue of B

}
= lim

k→∞
∥Bkx∥/∥Bk−1x∥

for almost every x. Note that the above computation is particularly simple because all the
eigenvalues of B are real and non-negative. When working with a general n× n matrix, it
may happen that the eigenvalues and corresponding eigenvectors are not real.

For example, all but one of the eigenvalues of the randomly generated matrix

A =


−4 −3 −7 5 7
0 2 −7 6 −6
−2 −6 −2 4 −1
−1 −7 −5 −7 −1
−1 −2 −2 −8 1


come in complex conjugate pairs. Plotted in the complex plane these eigenvalues may be
visualized as

-8

-6

-4

-2

 0

 2

 4

 6

 8

-10 -8 -6 -4 -2 0 2 4 6 8

Complex Eigenvalues for a Real 5x5 Matrix

Re

Im

In this computer lab you will compute some of the complex eigenvalues of the above matrix
using the shifted inverse power method.

Theory

Let α ∈ C be a fixed complex number closest to the eigenvalue λ that you wish to find.
Given a randomly chosen vector y0, define yk by the recurrence

(A− αI)yk = yk−1.

It follows that

λ = α+ lim
k→∞

∥yk−1∥2

yk−1 · yk
.

1

Any program for solving yk will involve complex arithmetic since α is complex. In par-
ticular, the yk are complex valued and yk−1 denotes the vector formed by taking complex
conjugates of each of the entries in yk−1. Moreover, to prevent overflow of the floating
point registers it will be necessary to renormalize the vectors yk to unit vectors after each
iteration. As with the original power method yk/∥yk∥ may not converge as k → ∞. This
is because eigenvectors are not unique. However, the distance to the eigenspace corre-
sponding to λ does tend to zero. Thus, at each step of the iteration we obtain a better
approximation to some eigenvector of λ. Although A is real valued in the example given
here, the method works equally well for any complex valued matrix.

Step 1

Let B = A − αI. Since B is complex valued and we will be solving Byk = yk−1 at each
iteration, we need to modify the plufact and plusolve routines we wrote last month to
work with complex valued matrices. In addition to changing all the variable types from
double to complex you will also need to change the function call fabs to cabs in the pivoting
code. Make a working directory called invpower and copy recent versions of matrixlib.c
and matrixlib.h into that directory. Now create complex versions of plufact and plusolve
called cplufact and cplusolve and add them to the matrixlib code library and header.
Please check that the library still compiles. You may wish to create or copy a Makefile to
do this. After you have verified that the new routines compile, please submit your current
work using the command

$ submit -q1 invpower

Step 2

Create a subroutine cdotprod and cvecnorm2 to compute the complex dot product and
vector norms given by x · y and ∥x∥2 by finishing the definitions

complex cdotprod(int n,complex x[n],complex y[n]){
// Put your code here.

}
double cvecnorm2(int n,complex x[n]){

// Put your code here.
}

After you have checked that your subroutines compile and work, submit your code directory
using the submit command

$ submit -q2 invpower

Step 3

A good starting point for creating a shifted inverse iteration subroutine is the code for
finding the matrix norm of A−1 from Programming Project 2. This code also appears in
Part 2 Question 2 on the midterm and here with line numbers for reference:

1 double invmatnorm2(int n,double A[n][n]){
2 double B[n][n],*P[n],y[n],yk[n];
3 bzero(B,sizeof(double)*n*n);

2

4 for(int k=0;k<n;k++){ // B = ATA
5 for(int i=0;i<n;i++){
6 for(int j=0;j<n;j++){
7 B[i][j]+=A[k][i]*A[k][j];
8 }
9 }

10 }
11 PLUfact(n,B,P);
12 for(int i=0;i<n;i++){ // Choose x ∈ Rn randomly
13 y[i]=2.0*random()/RAND_MAX+1.0; // and store x in y for now
14 }
15 double q=0,qk;
16 for(int k=1;k<100*n;k++){
17 PLUsolve(n,B,P,yk,y); // yk = B−kx/∥B1−kx∥2
18 qk=vecnorm2(n,yk);
19 for(int j=0;j<n;j++){
20 y[j]=yk[j]/qk; // Overwrite y by yk/∥yk∥2
21 }
22 if(fabs(qk-q)<5e-15*qk){ // Converge to 15 digits where
23 return sqrt(qk); // ∥A∥2 ≈ (∥B−kx∥2/∥B1−kx∥2)1/2
24 }
25 q=qk;
26 }
27 fprintf(stderr,"invmatnorm2: Failed to converge!\n");
28 return sqrt(qk);
29 }

Copy this subroutine or an equivalent code into your working directory. After you have
completed this step, submit your working directory using the submit command

$ submit -q3 invpower

Step 4

Modify the the invmatnorm2 subroutine to perform the shifted inverse power method. You
may do this anyway you like or write the code from scratch if you prefer. Here are
some ideas about what should be changed: In line 1 change the name of the routine from
invmatnorm2 to shiftinvpower and change the return type to complex. Change the variable
type of the vectors and matrices from double to complex. Add complex alpha to the list of
arguments for the function. The code from lines 4 through 10 should be replaced by code
which initializes B as A − αI. Calls to plufact and plusolve in lines 11 and 17 should
be replaced by calls to cplufact and cplusolve. Remove the square roots from lines 23
and 28 so both read as return qk instead. Replace double in line 15 by complex. Line 18
should be replaced by the calculation

qk=alpha+1.0/cdotprod(n,y,yk);
double yknorm=cvecnorm2(n,yk);

3

Finally, since qk no longer contains the norm of yk, then line 20 should be changed to

y[j]=yk[j]/yknorm;

It is possible I have missed some necessary changes. Please fix any errors or omissions that
you find. We will test the resulting code in the next step. For now make sure your code
complies and then submit it using

$ submit -q4 invpower

Step 5

This step tests your implementation of the shifted inverse power method using the matrix
A given earlier. Choose α = 0.5 + 4i and check that the method converges to the correct
eigenvalue 0.47880+3.74167i. Please call your program step5.c and the executable step5.
After debugging your code, choose a value of α in order to find the eigenvalue in the top left
corner of the eigenvalue plot. Send the output of your program showing the computation
of this eigenvalue to the file result.txt and submit it using the following commands

$./step5 >result.txt
$ cd ..
$ submit -q5 invpower

Step 6 Extra Credit

Modify your program to find an eigenvector corresponding to the eigenvalue found in the
previous step and submit your code using

$ submit -q6 invpower

4

