Math/CS 466/666 Programming Project/Homework 3
Newton’s Method: Solution Key

1. Consider Newton’s method for solving f(x) = 0 where f(x) = 23— 3 using the starting
point zg = 1.

(i) Let e, = x, — 3'/3 and create a table with three columns showing n, ,, and e,

21
22

23

forn=0,1,...

8.

The program is

#include <stdio.h>
#include <math.h>

double f(double Xx){

return x*x*x-3;
}
double df(double x){
return 3*x*x;
}

double g(double x){
return x-f(x)/df(x);

}

int main(){

printf("#pli.c\n");
double x=1,xinf=pow(3.0,1.0/3);

printf("#%2s %22s %22s\n","n","xn","en");
for(int i=0;;i++){

printf("%3d %22.14e %22.1l4e\n",i,x,x-xinf);

if(i>=8) break;

X=g(x) ;
}
return 0;
}
The output from running the program was
#pli.c
#n xn en
0 1.00000000000000e+00 4.42249570307408e-01
1 1.66666666666667e+00 2.24417096359258e-01
2 1.47111111111111e+00 2.88615408037028e-02
3 1.44281209824934e+00 5.62527941934950e-04
4 1.44224978959900e+00 2.19291591328644e-07
5 1.44224957030744e+00 3.34234593127314e-14
6 1.44224957030741e+00 8.05562214156730e-17
7 1.44224957030741e+00 8.05562214156730e-17
8 1.44224957030741e+00 8.05562214156730e-17

Bow N =

© o N O w»

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Math/CS 466/666 Programming Project/Homework 3

(ii) A sign of quadratic convergence is that the number of significant digits double at
each iteration. Does that happen in this case?

The number of significant digits in the approximation x,, is defined as the largest nonneg-
ative integer k such that
|z _'31/3|

—k
’31/3| <5 x107".

We modify the program to report number of significant digits in each iteration. The
program is

#include <stdio.h>

#include <math.h>

double f(double x){

return x*x*x-3;
}
double df(double x){
return 3*x*x;
}

double g(double x){
return x-f(x)/df(x);
}
unsigned sigdig(double ps,double p){
double relerror=fabs((p-ps)/p);
return (int)ceil(-log(relerror/5)/1log(10));

int main(){

printf("#plii.c\n");

double x=1,xinf=pow(3.0,1.0/3);

printf("#%2s %22s %22s %12s\n","n","xn","en","sigdig");

for(int i=0;;i++){
printf("%3d %22.14e %22.14e %12u\n",i,x,x-xinf,sigdig(x,xinf));
if(i>=8) break;
X=g(x);

}

return 0;

Math/CS 466/666 Programming Project/Homework 3

The output from running the program was

#plii.c

#n Xxn en sigdig
0 1.00000000000000e+00 -4.42249570307408e-01 2
1 1.66666666666667e+00 2.24417096359258e-01 2
2 1.47111111111111e+00 2.88615408037027e-02 3
3 1.44281209824934e+00 5.62527941935009e-04 5
4 1.44224978959900e+00 2.19291591330162e-07 8
5 1.44224957030744e+00 3.35287353436797e-14 15
6 1.44224957030741e+00 0.00000000000000e+00 2147483648
7 1.44224957030741e+00 0.00000000000000e+00 2147483648
8 1.44224957030741e+00 0.00000000000000e+00 2147483648

For the range n = 1,2,3,4 the number of significant digits approximately doubles from
iteration to iteration. This can also be seen from the fact that the exponents

e-02, e-04, e-07, e-14

appearing in the exponential notation representation of e, approximately double from
iteration to iteration.

Note that the number of significant digits don’t double between the n =0 and n =1
iterations, because o isn’t close enough to 3'/% that the asymptotic regime is in effect.
Moreover, for iterations n = 5 and greater, further quadratic convergence is prevented by
rounding error present in the double precision arithmetic used for the computation.

(iii) Comment on how rounding error effects the numerical convergence of Newton’s
method.

In general Newton’s method is resistant to rounding errors, because any errors made in
earlier iterations are corrected by subsequent iterations. Thus, there is no accumulation
of rounding errors.

Math/CS 466/666 Programming Project/Homework 3

(iv) Write |e,y1| = Mylen|? and compute M, for n = 1,2,3, and 4. In this case is
M,, bigger or less than 17

The program to compute M, is

1 #include <stdio.h>

2 #include <math.h>

3

4 double f(double x){

5 return x*x*x-3;

6 }

7 double df(double x){

8 return 3*x*x;

9 }

10 double ddf(double x){

11 return 2;

12 }

13 double g(double x){

14 return x-f(x)/df(x);

15 }

16 int main(){

17 printf("#pliii.c\n");

18 double x=1,xinf=pow(3.0,1.0/3);

19 printf("#%2s %22s %22s %22s\n","n","xn","en","Mn");
20 for(int 1=0;i<=4;i++){

21 double eold=x-xinf;

22 double y=g(x);

23 double enew=y-xinf;

24 double M=fabs(enew/eold/eold);
25 printf("%3d %22.14e %22.14e %22.14e\n",i,x,eold,M);
26 X=Y;

27 }

28 return 0;

29 }

Math/CS 466/666 Programming Project/Homework 3

and it produces the output

#pliii.c

#n
0

DWW N

xn
1.00000000000000e+00
1.66666666666667e+00
1.47111111111111e+00
1.44281209824934e+00
1.44224978959900e+00

en
-4.42249570307408e-01
2.24417096359258e-01
2.88615408037027e-02
5.62527941935009e-04
2.19291591330162e-07

Mn
1.14741652343580e+00
5.73069948436890e-01
6.75312944377540e-01
6.93000870018061e-01
6.95036222636418e-01

Therefore, the values of M,, for n =1,2,3,4 are less than 1.

The fact that M,, is not extremely large helps explains why the number of significant
digits nearly doubles between each iteration. Suppose the approximation z,, was good to

k significant digits. Then

Since

lent1/3Y3] = M|en|?/3/3 < (6.950362226364186-01)(3"/%) (5 x 107%)*

it follows that x,, is good to at least 2k — 0.8 significant digits. As 0.8 is small compared
to even a few significant digits, then in this case, quadratic convergence is observed from

len /343 < 5 x 107,

< 5 x 5.01207846722729 x 1072F < 5 x 10%872F,

nearly the first iteration.

Math/CS 466/666 Programming Project/Homework 3
(v) Find the limit of M,, when n — oo analytically. What is the exact value of the
limit?
Let a = 3'/3. By Taylor’s theorem for each n there exists &, between a and x,, such that

0= £(a) = F(an) + F'(zn)(a — a) + 3 f" (€)@~ 20)*

By definition

o ||e€n+|;| B |T:;+1_;|§| B 'ﬁ’f“ﬁ ;|§' - f?;?n)ZJ;(Q%) —al
) —a) Pl f@) 4 P)2 1FE)
| (@n)||zn — al? | (zn)||zn — al? 2 f'(zn)]
Therefore

b M = i @) _ 17 @)

mn n—oo 2| f'(zn)| — 2|f(a)|’

In our case

f'(z) = 322 and " (z) = 6.
Consequently

6 1
lim M, = 202 3713 £ 0.6933612743506346.
n—00 2 - 3a? a
Note that the first two digits of the limit agrees with the values of M3 and M, computed
in the previous questions.

