
Math/CS 466/666: Lecture 3

In 1669 Isaac Newton devised a technique for approximating the solution of a polyno-
mial equation [2]. In 1685 John Wallis named this method Newton’s method and Joseph
Raphson simplified it in 1690. In 1740 Thomas Simpson extended the method to general
nonlinear equations and systems of equations [3]. In 2000 Dongarra and Sullivan listed
Newton’s method among the top 10 algorithms of the 20th century [1].

Isaac Newton the mathematician, astronomer, theologian and physicist on the
left; on the right John Wallis the clergyman and mathematician.

Newton’s Method

Newton’s method is given by the fixed point iteration

xn+1 = g(xn) where g(x) = x− f(x)/f ′(x)

and x0 is an initial approximation of the root.

Convergence of Newton’s Method. Let f be a twice continuously differentiable func-
tion. Let a be a point such that f(a) = 0 and f ′(a) ̸= 0. Prove that Newton’s method is
quadratically convergent provided x0 is close enough to a.

Proof. Let δ > 0 be chosen small enough such that

|g′(x)| =
∣∣∣f(x)f ′′(x)

f ′(x)2

∣∣∣ ≤ γ < 1 for |x− a| ≤ δ.

Then, provided |x0 − a| ≤ δ, the inequality

|xn+1 − a| = |g(xn)− g(a)| =
∣∣∣ ∫ xn

a

g′(s)ds
∣∣∣ ≤ γ|xn − a|

shows |xn − a| ≤ γn|x0 − a| → 0 as n → ∞ and moreover that |xn − a| ≤ δ. Now define
en = xn − a. By Taylor’s theorem there exists ξn between xn and a such that

0 = f(a) = f(xn)− f ′(xn)en +
f ′′(ξn)

2
e2n for n = 0, 1, 2, . . . .

1



Therefore
f(xn)

f ′(xn)
= en − f ′′(ξn)

2f ′(xn)
e2n.

It follows that

en+1 = xn − f(xn)

f ′(xn)
− a =

f ′′(ξn)

2f ′(xn)
e2n

Let
A = max

{
|f ′′(x)| : |x− a| ≤ δ

}
and B = min

{
|f ′(x)| : |x− a| ≤ δ

}
.

Since f ′′ is continuous then A < ∞. By definition of δ we have f ′(x) ̸= 0 for |x− a| ≤ δ.
Therefore, continuity of f ′ implies B > 0. It follows that

|en+1| =
∣∣∣ f ′′(ξn)

2f ′(xn)
e2n

∣∣∣ ≤ A

2B
|en|2 for n = 0, 1, 2, . . . .

Consequently |en+1| ≤ M |en|2 where M = A/(2B). This shows Newton’s method is at
least quadratically convergent. ////

It is sometimes said that Newton’s method doubles the number of significant digits at
each iteration. This can be explained as follows: Let

α = log10
(
5M |a|

)
so that 10α = 5M |a|.

Suppose xn is accurate to k significant digits. By the definition this means

|xn − a|
|a|

≤ 5× 10−k.

Now
|xn+1 − a|

|a|
≤ M |xn − a|2

|a|
= M |a|

( |xn − a|
|a|

)2

≤ M |a|(52 × 10−2k) = 5× 10α−2k

implies xn+1 is accurate to 2k − α significant digits. Provided k is large compared to α
this is about twice the number of significant digits that were accurate in xn. Since k → ∞
as xn → a, it is natural to assume that k is very large compared to α. Therefore Newton’s
method about doubles the number of significant digits between each iteration.
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