
Math 466/666: Programming Project 1

1. This question explores why the mantissas of the floating-point numbers which appear
in typical computations follow the reciprocal distribution.

(i) Consider the primary-school multiplication table which shows all products for the
numbers 1 through 9. Make a bar-chart depicting how many of the 81 products
in that table begin with the digit 1, how many with a 2 and so forth up to 9.

I wrote a program called p1i.c which looks like

1 #include <stdio.h>
2

3 int count[10];
4 int leading(int p){
5 while(p>9) p/=10;
6 return p;
7 }
8 int main(){
9 printf("p1i--Make a multiplication table"

10 " and count leading digits.\n\n");
11 for(int i=1;i<10;i++){
12 for(int j=1;j<10;j++){
13 int p=i*j;
14 printf("%3d ",p);
15 count[leading(p)]++;
16 }
17 printf("\n");
18 }
19 printf("\n#%10s %10s %10s\n","digit","count","percent");
20 for(int i=1;i<10;i++) {
21 printf(" %10d %10d %10.2f\n",i,count[i],
22 100.0*count[i]/(9*9));
23 }
24 return 0;
25 }

When run it produced the output

p1i--Make a multiplication table and count leading digits.

1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54

1

7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

digit count percent
1 18 22.22
2 15 18.52
3 11 13.58
4 12 14.81
5 6 7.41
6 7 8.64
7 4 4.94
8 5 6.17
9 3 3.70

2

The Gnuplot script

1 set terminal postscript color enhanced eps font "Courier-Bold"
2 set output 'p1i.eps'
3 set size 0.7,0.7
4 set style histogram cluster gap 1
5 set style data histogram
6 set key left
7 set ylabel "count"
8 set xlabel "N"
9 set title "Products with leading digit N"

10 plot [0.5:9.5] [0:20] \
11 newhistogram at 1, \
12 "p1i.dat" using 2:xtic(1) lt 1 lc 1 title "",\
13 "" using ($1):($2-.8):2 with labels ti ""

then produced the bar chart

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9

c
o
u
n
t

N

Products with leading digit N

18

15

11
12

6
7

4
5

3

3

(ii) Write a computer program compute all products of the form

d1 · d2 · d3 where di ∈ {1, 2, . . . , 9}

and count how many begin with the digit 1, how many with a 2 and so forth up
to 9. Also compute the percentages in each category. For reference, the output
of your program should look like

digit count percent
1 218 29.90
2 137 18.79
3 94 12.89
4 81 11.11
5 46 6.31
6 43 5.90
7 37 5.08
8 37 5.08
9 36 4.94

Please submit your source code—in any language—for this question.

I wrote a program in C that looked like

1 #include <stdio.h>
2

3 int count[10];
4 int leading(int p){
5 while(p>9) p/=10;
6 return p;
7 }
8 int main(){
9 printf("p1ii--Count leading digits in products"

10 " of the form d0*d1*d2.\n");
11 for(int i=1;i<10;i++){
12 for(int j=1;j<10;j++){
13 for(int k=1;k<10;k++){
14 int p=i*j*k;
15 count[leading(p)]++;
16 }
17 }
18 }
19 printf("\n#%10s %10s %10s\n","digit","count","percent");
20 for(int i=1;i<10;i++) {
21 printf(" %10d %10d %10.2f\n",i,count[i],
22 100.0*count[i]/(9*9*9));
23 }
24 return 0;

4

25 }

which produced the output

p1ii--Count leading digits in products of the form d0*d1*d2.

digit count percent
1 218 29.90
2 137 18.79
3 94 12.89
4 81 11.11
5 46 6.31
6 43 5.90
7 37 5.08
8 37 5.08
9 36 4.94

5

(iii) In the text it is suggested that the mantissas of the numbers which appear in
numerical calculations follow the reciprocal distribution given by the density

r(x) =
1

x log b
for x ∈ [1/b, 1].

Set b = 10 and calculate

pd =

∫ (d+1)/10

d/10

r(x)dx for d ∈ {1, 2, . . . , 9}.

to find the probability a numbers starts with the digit d under this hypothesis.

Using elementary calculus compute

pd =

∫ (d+1)/10

d/10

1

x log 10
dx =

log(d+ 1)− log d

log 10
.

To approximate pd for d ∈ {1, 2, . . . , 0} I wrote the program

1 #include <stdio.h>
2 #include <math.h>
3

4 double p(double d){
5 return log1p(1/d)/log(10);
6 }
7 int main(){
8 printf("p1iii--The probabilities p(d)"
9 " a number starts with digit d.\n\n");

10 printf("#%10s %10s %10s\n","digit","p(d)","100*p(d)");
11 for(int i=1;i<10;i++) {
12 double y=p(i);
13 printf(" %10d %10.5f %10.2f\n",i,y,100.0*y);
14 }
15 return 0;
16 }

which produced the output

p1iii--The probabilities p(d) a number starts with digit d.

digit p(d) 100*p(d)
1 0.30103 30.10
2 0.17609 17.61
3 0.12494 12.49
4 0.09691 9.69
5 0.07918 7.92

6

6 0.06695 6.69
7 0.05799 5.80
8 0.05115 5.12
9 0.04576 4.58

A third column has been added to the above output which converts the probabilities pd
into percentages in anticipation of the next question.

7

(iv) Repeat question (ii) for products of the form

πn = d1 · · · dn for n = 4, 5, 6

and comment on how the percents computed for different values of n compare
with the theoretical probabilities in part (iii).

I wrote a program that looked like

1 #include <stdio.h>
2 #include <math.h>
3

4 double p(double d){
5 return (log(d+1)-log(d))/log(10);
6 }
7 int leading(int p){
8 while(p>9) p/=10;
9 return p;

10 }
11 void products(int count[10],int n){
12 int d[n+1];
13 for(int i=0;i<=n;i++) d[i]=1;
14 while(d[n]==1){
15 int p=d[0];
16 for(int j=1;j<n;j++){
17 p*=d[j];
18 }
19 count[leading(p)]++;
20 int j=0;
21 while(d[j]==9) {
22 d[j]=1; j++;
23 }
24 d[j]++;
25 }
26 return;
27 }
28 int main(){
29 printf("p1iv--Compare the percents of d1*...*dn"
30 " to theoretical.\n");
31 int count[10];
32 int s=81;
33 for(int n=2;n<7;n++){
34 for(int i=0;i<10;i++) count[i]=0;
35 products(count,n);
36 printf("\n# n=%d\n",n);
37 printf("#%10s %8s %8s %9s %12s\n","digit",

8

38 "count","percent","100*p(d)","difference");
39 for(int i=1;i<10;i++) {
40 double xper=100.0*count[i]/s;
41 double xthy=100.0*p(i);
42 printf(" %10d %8d %8.2f %9.2f %12.4f\n",i,
43 count[i],xper,xthy,xper-xthy);
44 }
45 s*=9;
46 }
47 return 0;
48 }

which produced the output

p1iv--Compare the percents of d1*...*dn to theoretical.

n=2
digit count percent 100*p(d) difference

1 18 22.22 30.10 -7.8808
2 15 18.52 17.61 0.9094
3 11 13.58 12.49 1.0864
4 12 14.81 9.69 5.1238
5 6 7.41 7.92 -0.5107
6 7 8.64 6.69 1.9473
7 4 4.94 5.80 -0.8609
8 5 6.17 5.12 1.0576
9 3 3.70 4.58 -0.8720

n=3
digit count percent 100*p(d) difference

1 218 29.90 30.10 -0.1990
2 137 18.79 17.61 1.1837
3 94 12.89 12.49 0.4005
4 81 11.11 9.69 1.4201
5 46 6.31 7.92 -1.6081
6 43 5.90 6.69 -0.7962
7 37 5.08 5.80 -0.7237
8 37 5.08 5.12 -0.0398
9 36 4.94 4.58 0.3625

n=4
digit count percent 100*p(d) difference

1 2035 31.02 30.10 0.9136
2 1170 17.83 17.61 0.2235
3 796 12.13 12.49 -0.3616

9

4 629 9.59 9.69 -0.1040
5 486 7.41 7.92 -0.5107
6 394 6.01 6.69 -0.6895
7 376 5.73 5.80 -0.0684
8 371 5.65 5.12 0.5394
9 304 4.63 4.58 0.0577

n=5
digit count percent 100*p(d) difference

1 17983 30.45 30.10 0.3514
2 10321 17.48 17.61 -0.1304
3 7288 12.34 12.49 -0.1516
4 5510 9.33 9.69 -0.3598
5 4806 8.14 7.92 0.2209
6 3920 6.64 6.69 -0.0561
7 3451 5.84 5.80 0.0451
8 3240 5.49 5.12 0.3717
9 2530 4.28 4.58 -0.2912

n=6
digit count percent 100*p(d) difference

1 160073 30.12 30.10 0.0176
2 93006 17.50 17.61 -0.1084
3 67049 12.62 12.49 0.1226
4 50546 9.51 9.69 -0.1799
5 43011 8.09 7.92 0.1752
6 37583 7.07 6.69 0.3772
7 29804 5.61 5.80 -0.1910
8 27688 5.21 5.12 0.0947
9 22681 4.27 4.58 -0.3079

Note that the difference between the theory and the percents generated from the products
d1 · · · dn decrease as n increases.

10

(v) [Extra credit and for Math 666] Read the sections in our textbook about the
reciprocal distribution. State which sections you read and then provide a theo-
retical explanation why the mantissas of the floating-point numbers which appear
in typical computations follow the reciprocal distribution.

I read Section 2.8 The Frequency Distribution of Mantissas. This section proved persistence
of the reciprocal distribution under multiplication, which may be stated as

Theorem. If the mantissa of either x or y is distributed according to the re-
ciprocal distribution then the mantissa of xy is also distributed according to the
reciprocal distribution.

In that section it was also suggested and given as a homework problem that the reciprocal
distribution is persistent under division. Consequently, we have

Theorem. If the mantissa of either x or y is distributed according to the re-
ciprocal distribution then the mantissa of x/y is also distributed according to the
reciprocal distribution.

After showing these persistence results, the text also proved that even if the mantissas of
neither x nor y are distributed according to the reciprocal distribution, then the mantissa
of xy as well as x/y is at least no further from the reciprocal distribution than either x or
y. Here, the sense of distance was defined by

Definition. Let h represents the density of the distribution of the mantissa of x.
The distance of that distribution from the reciprocal distribution is defined as

D{h} = max
{h(z)− r(z)

r(z)
:
1

b
≤ z ≤ 1

}
where r(x) = 1/(x log 10) is the probability density of the reciprocal distribution.

While no theoretical estimates were given showing how fast the distribution of mantis-
sas converge to the reciprocal distribution under products or quotients, some calculation
results were provided when the distribution of x and y originally followed a uniform dis-
tribution. Those results were similar to the computations performed in the earlier parts
of this question. Note that no persistence results related to addition or subtraction were
shown. Therefore, it appears the reciprocal distribution only arises from the process of
taking repeated products and quotients.

11

2. This question explores how rounding errors accumulate in a sum of numbers. To avoid
the difficulties of floating-point arithmetic we consider the simpler case of fixed-point
numbers of the form X.XXXXXXX where each X corresponds to a decimal digit.

(i) Suppose real numbers Xi are chosen randomly according to a uniform distribu-
tion in the interval [0, 1]. Let X∗

i be the result of rounding Xi to the nearest
approximation of the form X.XXXXXXX. For definiteness, round so the last digit is
even in the case of a tie. Explain why it is reasonable to assume that the resulting
rounding errors

εi = X∗
i −Xi

will be uniformly distributed on the interval [−0.00000005, 0.00000005].

The rounding function Xi → X∗
i may be written as

X∗
i =



0.000 000 0 if 0.000 000 00 ≤ Xi ≤ 0.000 000 05
0.000 000 1 if 0.000 000 05 < Xi < 0.000 000 15
0.000 000 2 if 0.000 000 15 ≤ Xi ≤ 0.000 000 25

...
...

0.999 999 8 if 0.999 999 75 ≤ Xi ≤ 0.999 999 85
0.999 999 9 if 0.999 999 85 < Xi < 0.999 999 95
1.000 000 0 if 0.999 999 95 ≤ Xi ≤ 1.000 000 00.

There are special cases at the endpoints of the interval [0, 1] such that numbers can only
round down to 0 and only up to 1. Otherwise, we obtain either

Xi ∈ [X∗
i − 0.000 000 05, X∗

i + 0.000 000 05]

or
Xi ∈ (X∗

i − 0.000 000 05, X∗
i + 0.000 000 05)

and since the Xi are uniformly distributed, then conditioning on each interval—whether or
not the endpoints are open or closed—yields thatXi are uniformly distributed on the closed
version of that same interval. Thus, X∗

i − Xi has been seen to be uniformly distributed
on the interval [−0.000 000 05, 0.000 000 05] except in the case when X∗

i is either 0 or 1.
To handle this final case, note that the uniform distribution of Xi also implies

P{0.000 000 00 ≤ Xi ≤ 0.000 000 05} = P{0.999 999 95 ≤ Xi ≤ 1.000 000 00}.

Now, after conditioning on the possibilities X∗
i = 0 or X∗

i = 1 together, the chances
of rounding up or down are equally likely. In particular, we find that X∗

i − Xi is again
uniformly distributed on the interval [−0.000 000 05, 0.000 000 05]. Having treated all cases,
the general result now holds.

12

(ii) Statistical simulations can be performed on a computer by specifying a seed and
then using a pseudo-random number generator to create a sequence of numbers
based on that seed. Let S be the set of seeds defined as

S = { p(i) : i = 1, . . . , 20 } where p(x) = x3 + x+ 1.

Write a program to compute and print all twenty seeds.

I wrote the program

1 #include <stdio.h>
2

3 int p(int i){
4 return (i*i+1)*i+1;
5 }
6 int main(){
7 printf("p2ii--Print all twenty seeds"
8 " for a statistical simulation.\n\n");
9 printf("#%9s %12s\n","i","p(i)");

10 for(int i=1;i<=20;i++){
11 printf("%10d %12d\n",i,p(i));
12 }
13 return 0;
14 }

which produced the output

p2ii--Print all twenty seeds for a statistical simulation.

i p(i)
1 3
2 11
3 31
4 69
5 131
6 223
7 351
8 521
9 739

10 1011
11 1343
12 1741
13 2211
14 2759
15 3391
16 4113
17 4931

13

18 5851
19 6879
20 8021

There wasn’t much to do so I checked a few of these by hand and they seem fine.

14

(iii) The following C program generates n numbers uniformly distributed on the in-
terval [−0.00000005, 0.00000005] based on the seed specified in line 5.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){
4 int n=4,seed=992314;
5 srandom(seed);
6 printf("seed %d:",seed);
7 for(int i=0;i<n;i++){
8 double epsilon=0.0000001*random()/RAND_MAX-0.00000005;
9 printf(" %g",epsilon);

10 }
11 printf("\n");
12 return 0;
13 }

Modify the above program or write your own to print the first four numbers
corresponding to each seed ∈ S. Note that the results may depend on what
language, computer and operating systems you choose to use when answering
this question. Your report should include source code as well as output.

I modified the code to obtain

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int p(int i){
5 return (i*i+1)*i+1;
6 }
7 int main(){
8 printf("p2iii--Print four numbers corresponding"
9 " to each seed in S.\n\n");

10 for(int j=1;j<=20;j++){
11 int n=4,seed=p(j);
12 srandom(seed);
13 printf("seed %d:",seed);
14 for(int i=0;i<n;i++){
15 double epsilon=0.0000001*random()/RAND_MAX-0.00000005;
16 printf(" %g",epsilon);
17 }
18 printf("\n");
19 }
20 return 0;
21 }

which produced the output

15

p2iii--Print four numbers corresponding to each seed in S.

seed 3: 6.13802e-09 -2.75017e-08 -1.06908e-08 -5.60616e-09
seed 11: 4.26345e-08 2.64997e-09 -1.90219e-08 2.2105e-10
seed 31: 9.2119e-09 2.87117e-08 3.62696e-08 -9.77059e-09
seed 69: 2.10721e-08 4.83184e-08 3.61917e-08 6.65504e-09
seed 131: 4.27864e-08 -4.0747e-08 1.23879e-08 -8.96591e-09
seed 223: -1.01338e-08 -4.05078e-08 4.66581e-08 -1.39903e-08
seed 351: 2.73462e-08 4.71206e-08 -2.89584e-08 -1.63243e-08
seed 521: 1.90335e-08 -3.14898e-08 1.51742e-08 -2.53968e-08
seed 739: 3.22152e-08 -2.59194e-08 1.33286e-08 3.55071e-09
seed 1011: 2.99607e-08 9.4839e-09 4.50413e-08 1.02699e-08
seed 1343: 2.83515e-08 -2.61591e-08 -6.74133e-09 -1.19148e-08
seed 1741: -7.87187e-09 -3.54336e-08 3.89929e-08 2.87061e-08
seed 2211: -1.40778e-08 -2.10627e-08 1.31047e-08 2.37121e-08
seed 2759: 2.48398e-08 1.5139e-08 -1.95165e-09 1.53095e-08
seed 3391: -2.50259e-08 -2.77288e-08 2.6146e-08 -3.21723e-09
seed 4113: 4.954e-08 -3.87762e-09 2.69852e-08 8.04799e-09
seed 4931: -3.53068e-08 3.53229e-08 -1.67706e-08 -7.46813e-09
seed 5851: 3.63764e-08 3.88701e-08 2.75082e-08 4.33772e-08
seed 6879: -2.28735e-08 -4.77052e-08 -1.12922e-08 -3.40262e-10
seed 8021: -4.52227e-08 2.64932e-08 -4.77733e-08 -4.31564e-08

Note that the four pseudo-random numbers corresponding to each of the 20 different seeds
are different. It is also possible, if you used a different computer or programming language
that all the numbers are different than what is reported above. In this case, the numbers
should all at least lie in the interval [−0.000 000 05, 0.000 000 05] and be different.

16

(iv) The sum of n rounding errors may be simulated by computing

En(seed) =
n∑

i=1

εi

where εi is the sequence of pseudo-random numbers corresponding to seed from
part (iii) of this question. The root-mean-squared average

Rn =
(1

20

∑
seed∈S

∣∣En(seed)
∣∣2)1/2

can be used to characterize the expected error after n additions. Write a program
to compute Rn for n = 2k with k = 2, . . . , 20. Include the source code and output.

I wrote the program

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4

5 int p(int i){
6 return (i*i+1)*i+1;
7 }
8 double En(int n,int seed){
9 srandom(seed);

10 double E=0;
11 for(int j=0;j<n;j++){
12 double epsilon=0.0000001*random()/RAND_MAX-0.00000005;
13 E+=epsilon;
14 }
15 return E;
16 }
17 double Rn(int n){
18 double R=0;
19 for(int i=1;i<=20;i++){
20 double E=En(n,p(i));
21 R+=E*E;
22 }
23 return sqrt(R/20);
24 }
25 int main(){
26 printf("p2iv--Print Rn for n=2^k"
27 " where k=2,...,20.\n\n");
28 int n=2;
29 printf("#%7s %10s %14s\n","k","n","Rn");

17

30 for(int k=2;k<=20;k++){
31 n*=2;
32 printf("%8d %10d %14.5e\n",k,n,Rn(n));
33 }
34 return 0;
35 }

which produced the output

p2iv--Print Rn for n=2^k where k=2,...,20.

k n Rn
2 4 6.40086e-08
3 8 9.55103e-08
4 16 1.33514e-07
5 32 1.88863e-07
6 64 2.93637e-07
7 128 3.19049e-07
8 256 3.96978e-07
9 512 3.85517e-07

10 1024 8.54399e-07
11 2048 1.43634e-06
12 4096 2.07374e-06
13 8192 2.90232e-06
14 16384 3.61452e-06
15 32768 4.26340e-06
16 65536 5.85567e-06
17 131072 1.06668e-05
18 262144 1.36089e-05
19 524288 1.90202e-05
20 1048576 2.69180e-05

Note that the error root-mean-squared error given by Rn increases as n increases.

18

(v) Show the accumulation of rounding error simulated by your program increases
as

√
n where n is the number of terms in the sum by making a log-log plot of

(n,Rn) compared with the function 1e-7*sqrt(x).

The Gnuplot script

1 set terminal postscript color enhanced eps font "Courier-Bold"
2 set output 'p2v.eps'
3 set size 0.7,0.7
4 set key bottom right
5 set key spacing 1.5
6 set ylabel "R_n"
7 set xlabel "n"
8 set format y "10^{%L}"
9 set format x "10^{%L}"

10 set logscale x
11 set logscale y
12 set title "RMS Error in 20 Sums of n Rounding Operations"
13 plot [] [] \
14 "p2iv.dat" using 2:3 with points pt 5 title "R_n",\
15 1e-7*sqrt(x) ti "10^{-7}{/Symbol @{\140}\326}n"

created the graph

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
1

10
2

10
3

10
4

10
5

10
6

R
n

n

RMS Error in 20 Sums of n Rounding Operations

Rn

10
-7

√n

Since the slope of the line and the green dots are roughly the same, one can conclude that
the accumulation of rounding errors simulated by the program increase as

√
n.

19

(vi) [Extra credit and for Math 666] Read the Wikipedia article on the random walk
and any other source of information which you find useful. Provide references to
what you read and then give a theoretical explanation why the accumulation of
rounding errors should grow as

√
n where n is the number of terms in the sum.

The Wikipedia article was at

https://en.wikipedia.org/wiki/Random_walk

Since rounding error is with equal probability positive or negative, we compare the sum
En(seed) to a one-dimensional random walk of the form

Sn =
n∑

i=1

Zi

where Zi are independent random variables that are either 1 or −1 with a 50 percent
probability for either value. Probability shows that

E[Sn] =

n∑
i=1

E[Zi] = 0

while independence of the Zi shows

E[S2
n] = E

[n∑
i=1

n∑
j=1

ZiZj

]
=

n∑
i=1

E[Z2
i] +

∑
i ̸=j

E[ZiZj] =
n∑

i=1

E[Z2
i] = n.

It follows that the expected root-mean-square error is√
E[S2

n] =
√
n.

We now adapt the above argument to consider case where Zi are independently dis-
tributed rounding uniformly distributed on the interval [−δ, δ] where δ = 0.000 000 05. In
this case

E[Z2
i] =

1

2δ

∫ δ

−δ

x2dx =
1

6δ
x3

∣∣∣δ
−δ

=
1

3
δ2.

Consequently

E[S2
n] =

n∑
i=1

E[Z2
i] =

n

3
δ2

and

Rn ≈
(n
3

)1/2

(0.000 000 05) = K
√
n where K = 2.88675× 10−8.

We add the curve K
√
n to the plot in the previous part of this question to check whether

the theoretical value of K computed above is reasonable. The resulting graph

20

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
1

10
2

10
3

10
4

10
5

10
6

R
n

n

RMS Error in 20 Sums of n Rounding Operations

Rn

10
-7

√n

(2.88675x10
-8
)√n

is a strong indication that the above analysis is correct.

21

