
Math 466/666: Programming Project 1

Your work should be presented in the form of a typed report using clear
and properly punctuated English. Pencil and paper calculations may be
typed or hand written. Where appropriate include full program listings
and output. You may work in groups of two or three. If you choose to
work in a group, please turn in independently prepared reports that list
the other members of your group.

1. This question explores why the mantissas of the floating-point numbers which appear
in typical computations follow the reciprocal distribution.

(i) Consider the primary-school multiplication table which shows all products for the
numbers 1 through 9. Make a bar-chart depicting how many of the 81 products
in that table begin with the digit 1, how many with a 2 and so forth up to 9.

(ii) Write a computer program compute all products of the form

d1 · d2 · d3 where di ∈ {1, 2, . . . , 9}

and count how many begin with the digit 1, how many with a 2 and so forth up
to 9. Also compute the percentages in each category. For reference, the output
of your program should look like

# digit count percent
1 218 29.90
2 137 18.79
3 94 12.89
4 81 11.11
5 46 6.31
6 43 5.90
7 37 5.08
8 37 5.08
9 36 4.94

Please submit your source code—in any language—for this question.

(iii) In the text it is suggested that the mantissas of the numbers which appear in
numerical calculations follow the reciprocal distribution given by the density

r(x) =
1

x log b
for x ∈ [1/b, 1].

Set b = 10 and calculate

pd =

∫ (d+1)/10

d/10

r(x)dx for d ∈ {1, 2, . . . , 9}.

to find the probability a numbers starts with the digit d under this hypothesis.



(iv) Repeat question (ii) for products of the form

πn = d1 · · · dn for n = 4, 5, 6

and comment on how the percents computed for different values of n compare
with the theoretical probabilities in part (iii).

(v) [Extra credit and for Math 666] Read the sections in our textbook about the
reciprocal distribution. State which sections you read and then provide a theo-
retical explanation why the mantissas of the floating-point numbers which appear
in typical computations follow the reciprocal distribution.

2. This question explores how rounding errors accumulate in a sum of numbers. To avoid
the difficulties of floating-point arithmetic we consider the simpler case of fixed-point
numbers of the form X.XXXXXXX where each X corresponds to a decimal digit.

(i) Suppose real numbers Xi are chosen randomly according to a uniform distribu-
tion in the interval [0, 1]. Let X∗

i be the result of rounding Xi to the nearest
approximation of the form X.XXXXXXX. For definiteness, round so the last digit is
even in the case of a tie. Explain why it is reasonable to assume that the resulting
rounding errors

εi = X∗
i −Xi

will be uniformly distributed on the interval [−0.00000005, 0.00000005].

(ii) Statistical simulations can be performed on a computer by specifying a seed and
then using a pseudo-random number generator to create a sequence of numbers
based on that seed. Let S be the set of seeds defined as

S = { p(i) : i = 1, . . . , 20 } where p(x) = x3 + x+ 1.

Write a program to compute and print all twenty seeds.

(iii) The following C program generates n numbers uniformly distributed on the in-
terval [−0.00000005, 0.00000005] based on the seed specified in line 5.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(){
4 int n=4,seed=992314;
5 srandom(seed);
6 printf("seed %d:",seed);
7 for(int i=0;i<n;i++){
8 double epsilon=0.0000001*random()/RAND_MAX-0.00000005;
9 printf(" %g",epsilon);

10 }
11 printf("\n");
12 return 0;
13 }



Modify the above program or write your own to print the first four numbers
corresponding to each seed ∈ S. Note that the results may depend on what
language, computer and operating systems you choose to use when answering
this question. Your report should include source code as well as output.

(iv) The sum of n rounding errors may be simulated by computing

En(seed) =
n∑

i=1

εi

where εi is the sequence of pseudo-random numbers corresponding to seed from
part (iii) of this question. The root-mean-squared average

Rn =
( 1

20

∑
seed∈S

∣∣En(seed)
∣∣2)1/2

can be used to characterize the expected error after n additions. Write a program
to compute Rn for n = 2k with k = 2, . . . , 20. Include the source code and output.

(v) Show the accumulation of rounding error simulated by your program increases
as

√
n where n is the number of terms in the sum by making a log-log plot of

(n,Rn) compared with the function 1e-7*sqrt(x).

(vi) [Extra credit and for Math 666] Read the Wikipedia article on the random walk
and any other source of information which you find useful. Provide references to
what you read and then give a theoretical explanation why the accumulation of
rounding errors should grow as

√
n where n is the number of terms in the sum.


