An example of a layout for 32-bit floating point is

Question: How to represent o?
(1) Want. all bits equal zero to mean zero

$$
e=0 \quad m=0 \quad s=t
$$

recall the
exponent is
actually e-127
so one can store reugative exponents

$$
1.01 \times 2^{e-127}
$$

Stone integers on a coin pouter...

$$
b_{17} \cdots b_{2} b_{1} b_{D}=\sum_{k=0}^{17} b_{k} \partial^{k} \quad b_{i} \in\{0,1\}
$$

How to stone negation integers? only positive integers...
(1) Sign bit. ($1^{l} s$ complement)
(2) R's complement
(3) bias or offset

Since $e=0$ corresponds to 2^{-127} exponent maybe we doit need that exponent at all and this 2^{-126} is the smallest exponent that actually exists...
When $e=0$ this is then a special coss to store

0 , not-a-numher, $\infty,-\infty$, efc.

Sorry, at this point I forgot to save the lecture notes and they where lost when the computer powered off.

I'll try to recreate what I remember discussing:

First I talked about different types of error:

1. Initial Error - this is the errorion the
uputs to a calculation,
2. Propagated Error - this is how the
initial error affects the ausioer.
3. Generated Error - this is enrol created
during the calculation by rounding
4. Accumulated Error
=Propagated + genencited error.

There are two different ways to measure error: absolute and relative.

Let $x \in \mathbb{R}$ and x^{*} be an approximation of x.
abisto

$$
e_{a b y}=\left|x-x^{*}\right|
$$

A number correct to n decimal places has

$$
e_{\mathrm{abs}} \leq 0.5 \times 10^{-n}
$$

Excapplei Let $x \in \mathbb{R}$ and let $x^{*}=4,126$ be an approximation of x correctly rounded to the digits shown.

The Corepst x that rounds to x^{*} is 4.1265
The smallest x that rounds to x^{*} is $H_{2} 125 \%$
This, we know $x \in[4,1255,4.1265]$. In other words

$$
x=x^{*} \pm 0.0005=4.126 \pm 0.0005 .
$$

A correctly rounded number is one which is closest to the number being rounded.

When rounding it can happen that there are two numbers which are equally close to the number being rounded.

For example:
3.125 and 3.126 are equally close to 3.1255

In the case of a tie, chose the approximation whose final digit is even. In this case, we would round

$$
(3.1255)^{*}=3.126
$$

since 6 is even.
Excaplei Let $x \in \mathbb{R}$ and let $x^{*}=8.13$ be an approx himation of x correctly rounded to the digits shown.
Thess $x=8,13 \pm 0.005$ and in particular wo know

$$
x \in(8.125,8.135)
$$

* wits the endpoints arunt included because of the round to even on a tie rule.

Note avo the notation $8,13 \pm 0,005$ does nit explicitly indicates whether the endpoints are included or not.

$$
e_{\text {rel }}=\frac{e_{a b s}}{|x|}<\frac{e_{a b s}}{\left|x^{*}\right|-e_{a b s}} \stackrel{\sim}{c} \frac{e_{a b s}}{\left|x^{*}\right|}
$$

The above assumes the absolute error is small compared to the size of x and its approximation.

Unless we a being very careful we will
interchangathy use interchangatby use

$$
\frac{e_{a b s}}{|x|} \frac{e_{a b s}}{\left|x^{*}\right|}
$$

based on which ts more convenient.

A decimal number correct to n significant digits has

$$
e_{\mathrm{rel}} \leq 5 \times 10^{-n}
$$

Note p implies q is different than q implies p In particular, if $e_{\text {rel }} \leqslant 5 \times 10^{-n}$ thun one can not immudiatly conclude that the number is correct to n significant digits

Suppose $x \in R$ and $x^{*}=2.31$ be ax approsiomation for x correctly rounded to the digits shown.
Find a bound on the relative error...
Since $x=x^{*} \pm 0.005$ then $x \in(2.305,2.315)$ and at most

$$
e_{a b s}=\left|x-x^{*}\right| \leq 0.005
$$

Now

$$
e_{r e} \left\lvert\,=\frac{e_{a b s}}{|x|} \approx \frac{e_{a b s}}{\left|x^{*}\right|}=\frac{0.005}{2.31} \approx 0.0021645 . .1\right.
$$

Note that since 2.31 is good to $n=3$ significant digits, thin we know

$$
e_{\text {rel }} \leqslant 5 \times 10^{-3}=0.005
$$

The fact that our more precise eqtionats

$$
0.002164511 \leqslant 0.005
$$

shows consistency in these bounds.

Now, show that q does not imply p, that is, $e_{\text {rel }} \leqslant 5 \times 10^{-n}$ does not necessarily imply x^{*} is good to x significant digits.

Suppose $e_{\text {rel }} \leqslant 5 \times 10^{-3}$ and $x^{*}=9.38$ then

$$
\frac{|x-9.38|}{|x|} \leq 5 \times 10^{-3} \text { implies }
$$

assuming (as is reasonable) that $x>0$ that

$$
|x-9,38| \leqslant\left(5 \times 10^{-3}\right) x
$$

or

$$
-\left(5 \times 10^{-3}\right) x \leqslant x-9.38 \leqslant\left(5 \times 10^{-3}\right) x
$$

Thus

$$
9.38 \leq\left(1+5 \times 10^{-3}\right) x \text { and }\left(1-5 \times 10^{-3}\right) x \leqslant 9.38
$$

equivalutty

$$
\frac{9,38}{1+5 \times 10^{-8}} \leq x \quad \text { and } \quad x \leq \frac{938}{1-5 \times 10^{-3}}
$$

Consequently

$$
x \in[9,3333 \ldots, 9,42713, \ldots]
$$

It follows x is only known to 1 significant digit.

