
Computer Lab 01 Quadratic Equations

The computer labs provide computational experience related to the ana-
lytic theory presented in the lectures. The main tool for these exercises is a
programming language called Julia designed for the implementation of nu-
merical algorithms that combines the compiled efficiency of C and Fortran
with the interactive and notational convenience of Matlab and Python.

In science and engineering an important goal is to become a skilled
practitioner by doing it yourself. To this end the computers in the lab have
been provisioned with a Linux programming environment similar to what
is deployed on the university high-performance cluster, all other supercom-
puters worldwide and for most cloud computing. To access Linux please
restart the computer using the usb network boot key for this class.

Rather than using the lab equipment it is also possible to freely install
Julia on your personal laptop. While using your own computer goes along
well with doing it yourself, I will unfortunately be unable to help with any
technical problems that might crop up in that case. Even so, I’d recommend
trying to install Julia at home, if only to avoid coming in after hours to
complete the homework. You may also use your laptop in the lab.

Note that it is possible to forgo Julia and perform all your computations
using a different programming language. Although I would be happy to
grade assignments completed using such alternatives, my opinion is Julia
makes numerical methods much easier than a general-purpose programming
language. I am also able to provide more help with Julia.

Quadratic Equations

Our lab exercises start with solving a quadratic equation. Suppose we seek
to solve x2 + x = 5. The quadratic formula tells us

x =
−b±

√
b2 − 4ac

2a
where a = 1, b = 1 and c = −5.

Since how to perform this calculation with a pocket calculator is likely
well known, the focus for this lab is on using the computer and turning
the results in for grading. How to accomplish this with Julia will now be
described in step-by-step detail.

I would again emphasize in my opinion that even if you know another
language well, Julia will make numerical methods easier. We now begin by
using the interactive read-evaluate-print loop in Julia as a desktop calcula-
tor to plug in the numbers of the quadratic formula.

1

Computer Lab 01 Quadratic Equations

To start Julia open a terminal window and type the command julia
followed by the enter key. If you are using your personal computer the
technique for starting Julia may involving clicking a menu item. In either
case the display on the screen should look like

$ julia
_

_ _ _(_)_ | Documentation: https://docs.julialang.org
(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 1.6.1 (2021-04-23)

_/ |__'_|_|_|__'_| |
|__/ |

julia>

The prompt julia> indicates Julia is in interative mode waiting to be
used as a calculator. Enter the quadratic formula as two functions

xplus(a,b,c)=(-b+sqrt(b^2-4*a*c))/(2*a)

xminus(a,b,c)=(-b-sqrt(b^2-4*a*c))/(2*a)

Note that after entering the first function, the second one can be obtained
by pressing the up-arrow key, making the needed changes and then pressing
enter. Using the arrow keys to recall, edit and execute previous commands
in the Julia repl can save lots of typing. You can also cut and paste the
necessary input from this document.

The new lines on the screen should look like

julia> xplus(a,b,c)=(-b+sqrt(b^2-4*a*c))/(2*a)
xplus (generic function with 1 method)

julia> xminus(a,b,c)=(-b-sqrt(b^2-4*a*c))/(2*a)
xminus (generic function with 1 method)

2

Computer Lab 01 Quadratic Equations

If you make an error, press the up-arrow key, edit the line to correct
the error and then press enter to run it again. By default some errors result
in a long series of messages called a stack trace. While overwhelming at
first, such stack traces will become easier to understand over time.

When solving x2 + x = 5 the values of a, b and c in the quadratic
formula are a = 1, b = 1 and c = −5. Therefore, the two solutions may
be obtained by typing xplus(1,1,-5) and xminus(1,1,-5) in the Julia read-
evaluate-print loop.

So far we have done all our work interactively, so there is no program
nor program output, but just the transcript of the interactive session. It is
tempting to take a photograph of the screen and turn that in; however, in
anticipation of more involved calculations it is worth learning a better way.

Submitting Your Work

In general two things should be uploaded for grading:

• A working computer program.

• The output from running the program.

Keeping your work organized to avoid mistakes and confusion is important
for any type of science. Therefore, it may be useful to place your files in
working directories specific for each lab assignment. I have found naming
the directory lab01 and following a consistent pattern thereafter works well.

Although it is possible to create new directories and then organize your
files by means of drag and drop with a mouse, consider the alternative of
using the command line. Advantages of the command line are that

• Tasks performed from a text-based interface are possible to automate
as scripts.

• After this class you may find yourself using a cloud or high-performance
computing cluster with only a terminal interface.

• Using the command line for simple things flattens the learning curve
for when we need it to perform other tasks in the future.

To gradually become more familiar with the command line leave the window
with Julia running and open a new terminal window. Type mkdir lab01 at
the prompt to make a subdirectory and then change your working directory
to the new one by typing cd lab01.

At this point the output should look like

3

Computer Lab 01 Quadratic Equations

$ mkdir lab01
$ cd lab01
$

Note the commands mkdir and cd produce output only when they fail. Thus,
the fact that no additional output appears indicates they were successful.

Interactive computing is great for experimentation and visualization,
but not so much when performing a sequence of long-running numerical
calculations. Therefore, it is increasingly common to switch back and forth
from interactive computing to non-interactive jobs that run in batch queues
on remote systems. We now convert the interactive Julia session for solving
the quadratic equation into a real computer program. Writing a program
also provides something to submit for grading.

To this end create a file called quadratic.jl in an editor such as gedit
or pluma. This may be done by typing gedit quadratic.jl & at the prompt
in the terminal window. An editor window should open up. The relevant
windows on the screen might look like

4

Computer Lab 01 Quadratic Equations

Note carefully the & typed at the end of the gedit command above. This is
necessary so the terminal window will continue to accept commands while
the editor is running. Not typing the & can lead to confusion. If this happens
close the editor window and try again.

The next activity is to copy and paste the commands from the interac-
tive Julia session into the editor. Since ⟨ctrl⟩-c means interrupt the process
in the terminal window, then ⟨ctrl⟩-⟨shift⟩-c must be used to copy text from
the Julia repl. To find the definition of xplus type first two letters xp and
repeatedly press the up-arrow key until the definition appears. Highlight
the definition and press ⟨ctrl⟩-⟨shift⟩-c to copy it to the mouse. Finally click
on the editor and press ⟨ctrl⟩-v to paste it.

Adding ⟨shift⟩ to the usual copy and paste keystrokes is not needed for
the editor window but only the terminal. In particular, to copy text the
other direction press ⟨ctrl⟩-c in the editor, select the terminal window and
then press ⟨ctrl⟩-⟨shift⟩-v to paste the result into the interactive session.

Continue copying commands from the Julia repl to the editor until
the contents of quadratic.jl looks like

1 xplus(a,b,c)=(-b+sqrt(b^2-4*a*c))/(2*a)
2 xminus(a,b,c)=(-b-sqrt(b^2-4*a*c))/(2*a)
3 xplus(1,1,-5)
4 xminus(1,1,-5)

The line numbers which appear to the left are not part of the file. Depending
on the settings the line numbers may not be displayed by the editor. As
such line numbers are often referred to in the error messages reported by
Julia please turn them on if they do not appear.

Numbering the lines also provides a convenient way to identify different
parts of the program for further discussion in this document.

The above are the exact lines of code that were run interactively; how-
ever, changes need to be made to turn them into a program. In the repl the
return value of each command is automatically displayed in the interactive
session. Since a program is like a new command, only the return value of
line 4 is displayed by default. Thus, without further modification the value
of xplus(1,1,-5) will not be reported when the program is run.

To fix this problem change line 3 (and also 4 for consistency) to explic-
itly print and label the answers. The finished program is

5

Computer Lab 01 Quadratic Equations

1 xplus(a,b,c)=(-b+sqrt(b^2-4*a*c))/(2*a)
2 xminus(a,b,c)=(-b-sqrt(b^2-4*a*c))/(2*a)
3 println("xplus=",xplus(1,1,-5))
4 println("xminus=",xminus(1,1,-5))

Press ⟨ctrl⟩-s in the editor to save the file. Leave the editor window
open and switch to terminal window that does not have Julia running in
it. Type ls at the prompt to check the code has been saved. Modulo any
mistakes made earlier the contents of that window should now be

$ mkdir lab01
$ cd lab01
$ gedit quadratic.jl &
[1] 4747
$ ls
quadratic.jl
$

If quadratic.jl doesn’t appear in the lab01 directory, chances are that it
had been saved elsewhere. Go back to the editor and check; otherwise, it is
time to run the program.

Type julia quadratic.jl to run the program. The output should be

$ julia quadratic.jl
xplus=1.79128784747792
xminus=-2.79128784747792
$

Once the program is working properly, it is time to make an output
file to upload along with the program source for grading. This can be done
by means of a slight modification to the command just used to run the
program. Type julia quadratic.jl >quadratic.out to place the output
in the file quadratic.out. Then type cat quadratic.out to check that the
output is as expected.

The results should look like

6

Computer Lab 01 Quadratic Equations

$ julia quadratic.jl >quadratic.out
$ cat quadratic.out
xplus=1.79128784747792
xminus=-2.79128784747792
$

If you have reached this point, then congratulations you have finished
the lab. Only one more step needs to be completed in order to submit your
work: The files quadratic.jl and quadratic.out need to be converted to
pdf format so they can be viewed and annotated by the course management
system. In the lab the command

j2pdf -o submit01.pdf quadratic.jl quadratic.out

may be used to produce a file submit01.pdf suitable for uploading.
On Microsoft Windows suitable files for upload can be generated by

printing quadratic.jl and quadratic.out to pdf from within Notepad. For
example, if code01.pdf corresponds to the printout of quadratic.jl and
run01.pdf to quadratic.out, then upload both code01.pdf and run01.pdf
for grading. A similar technique will work for MacOS.

Subsequent lab assignments will require more independent work but
follow a similar sequence of steps to produce files suitable for upload that
can be viewed and annotated by the grader.

Before leaving don’t forget to close the applications open on your desk-
top and logout. Exit the Julia repl by typing ⟨ctrl⟩-d and then ⟨ctrl⟩-d
again to close the terminal. The editor has a menu at the top. If using one
of the lab computers, please reboot it into Microsoft Windows.

7

xplus(a,b,c)=(-b+sqrt(b^2-4*a*c))/(2*a)
xminus(a,b,c)=(-b-sqrt(b^2-4*a*c))/(2*a)
println("xplus=",xplus(1,1,-5))
println("xminus=",xminus(1,1,-5))

