Computer Lab 05 Nonlinear Systems

The computer labs provide computational experience related to the ana-
lytic theory presented in the lectures. The main tool for these exercises is a
programming language called Julia designed for the implementation of nu-
merical algorithms that combines the compiled efficiency of C and Fortran
with the interactive and notational convenience of MATLAB and Python.
In science and engineering an important goal is to become a skilled
practitioner by doing it yourself. To this end the computers in the lab have
been provisioned with a Linux programming environment similar to what
is deployed on the university high-performance cluster, all other supercom-
puters worldwide and for most cloud computing. To access Linux please
restart the computer using the USB network boot key for this class.
Rather than using the lab equipment it is also possible to freely install
Julia on your personal laptop. While using your own computer goes along
well with doing it yourself, I will unfortunately be unable to help with any
technical problems that might crop up in that case. Even so, I'd recommend
trying to install Julia at home, if only to avoid coming in after hours to
complete the homework. You may also use your laptop in the lab.

Newton’s Method

The first computer lab introduced Julia by using it as a desktop calculator
while the second explored the convergence of Newton’s method using ar-
bitrary precision arithmetic. The next activity is to use Newton’s method
approximate solutions to systems of nonlinear equations.

Consider finding the root to f(z) = 0 where f:R™ — R™. Newton’s
method for systems can be described mathematically as the iterative scheme

20D = 38 D f(a)] f)

where z(®) € R” is an initial guess and each (®) is an improved approxi-
mation of that solution. Here D f(x) € R™*™ is the matrix derivative given
as the Jacobian matrix for f by

Oh Ofr .. 9f
Ox1 O0xs 0%y,
Df<37) - : : . :
Ofn Ofn .. Ofn
8:131 8:132 83371

The goal today is for you to write a program that approximates the
solution of an individualized system of n = 3 nonlinear equations in three
variables. Your system may be obtained by clicking on the following link:

1

Computer Lab 05 Nonlinear Systems

https://fractal.math.unr.edu/~ejolson/466-24/newt3d/newt3d. cqil

Please do not use anyone else’s system of equations for this lab.

The following discussion concerns the system which appears when I
click the above link. That system is different than what you will obtain
when you click the same link. To finish this lab please repeat these same
steps but for own individualized system of equations.

Upon clicking on the link, I obtained

Your function f(x,y,z) in Julia-compatible code is

fl(x,y,z) = -3x™(-3)*y™(-3)*z"3 + x*y™(-3)*z~(-2) - 0.9812 + x"3*z
f2(x,y,z) = -x*2*¥z~(-1) + 3x*z~2 + 2.405

f3(x,y,z) = -2x¥z™3 + z + 23.38 - 2x"(-1)*y™2*%z~(-1) + 3x™(-1)*y"2*z
fix,y,z) = [fl(x,y,z), f2(x,y,z), f3(x,y,z)]

and the initial guess x0 is

x0 = [1.155, -3.768, 0.4616]

Now, open the Julia REPL and enter the above formula and initial condition.

Let’s check how close the initial approximation is to the root by plug-
ging it in. Since f(x,y, z) is a function of three scalars rather than a 3-vector
we need the splat operator ... to evaluate f(2(?)). The result

julia> f(x0...)
3-element Vector{Float64}:
-0.36771284790703074
0.25330118402218327
-12.623310707923679

appears to show that the initial guess is not very good. Fortunately, z(9) has
been tested ahead of time and it’s known Newton’s method will converge.

One of the complications of Newton’s method is that the algorithm
requires the derivative D f(x) to perform the iterations. While it might
appear necessary to find the derivative by hand, in the 1960s computer
algebra systems began to appear that were capable of finding derivatives
using the rules of calculus. Today, such computer algebra systems are widely
available. One is built in to Julia.

https://fractal.math.unr.edu/~ejolson/466-24/newt3d/newt3d.cgi

Computer Lab 05 Nonlinear Systems

Symbolic Differentiation

Julia allows us to write a program that automatically creates a new function
Df (x) corresponding to the derivative D f(x) as it runs. In general this type
of activity is called metaprogramming. Before writing a full program for
Newton’s method we will try out some metaprogramming in the REPL.

Type using Symbolics to load the Julia computer algebra system into
the REPL. If using your laptop you may need to install the library before
proceeding. This may be done with the built-in package manager or the
Pkg.add command.

After everything is installed and working the screen should look like

julia> fl(x,y,z) = -0.9812 + x"3*z - 3x™(-3)*y"(-3)*z"3 + x
¥y~ (-3)*z7(-2)
fl (generic function with 1 method)

julia> f2(x,y,z) = 2.405 - x™2*z™(-1) + 3x*z"2
f2 (generic function with 1 method)

julia> f3(x,y,z) = 3x™(-1)*y"2*z - 2x*z"3 + z + 23.38 - 2x©
(-1)*y~2*z~(-1)
f3 (generic function with 1 method)

julia> f(x,y,z) = [fl(x,y,z), f2(x,y,z), f3(x,y,z)]
f (generic function with 1 method)

julia> x0 = [1.155, -3.768, 0.4616]
3-element Vector{Float64}:

1.155

-3.768

0.4616

julia> f(x0...)
3-element Vector{Float64}:
-0.36771284790703074
0.25330118402218327
-12.623310707923679

Computer Lab 05 Nonlinear Systems

julia> using Symbolics

julia>

Define the symbolic variables x, y and z by typing
@variables x,y,z
The derivative D f(t) may now be found by typing
Dfsym=Symbolics.jacobian(f(x,y,z),[x,y,z])

The screen should now look like

julia> @variables x,y,z
3-element Vector{Num}:
X

y
z

julia> Dfsym=Symbolics.jacobian(f(x,y,z),[X,y,z])
3x3 Matrix{Num}:

((L / y)™3)*((1 / z)72) + 3z%(x™2) + 9(z"3)*((1 / x)"2)*(1
/(P25 ((1 7 y)™3) e X3 4 (-2xF((1 / y)™3)*¥(1 / (2°2)
)) / z - 9(z7°2)*((1 / x)73)*((1 / y)"3)

(-2x) / z + 3(z72)
(x~2) / (z7°2) + 6x*z
(-3z*(y"2)) / (x72) - 2(z73) - z*((-2(y
~2)) / ((x72)*(z272))) 1+ (3(y"2)) / x -6
x*¥(z72) - x*((-2(y"2)) / ((x*2)*(272)))

The formatting is admittedly poor and the ellipses indicate that some
of the output has been omitted. However, the computer has done the
differentiation correctly and what is left is to use the metaprogramming
feature of Julia to convert this symbolic expression into executable code. In

4

Computer Lab 05 Nonlinear Systems

particular, we turn the algebraic expression for the derivative into a string
and append another string to make a function definition.
To do this type

as="Df(x,y,z)="*string(Dfsym)
Finally, evaluate the string by typing
eval (Meta.parse(as))

At this point Df has been created and the screen should look like

julia> as="Df(x,y,z)="*string(Dfsym)

Df(x,y,z)=Num[((1 / y)"3)*((1 / z)"2) + 3z*%(x"2) + 9(z"3)*
((1 /7 x)72)*(1 / (x72))*((1 / y)~3) 9(z73)*((1 / x)"3)*((1
/[y)"2)*(1 / (y?2)) - 3x*((1 / y)"2)*(1 / (y*2))*((1 / z)"2
) X*3 + (-2x*((1 / y)™3)*(1 / (272))) / z - 9(z72)*((1 / Xx)
~3)F((1 / y)™3); (-2x) / z + 3(z72) 0 (x™2) / (z272) + 6x*z;

(-3z*(y"2)) / (x72) - 2(z73) - z*((-2(y"2)) / ((x"2)*(z"2)
)) (-4y) / (x*z) + (6y*z) / x 1 + (3(y"2)) / x - 6x*(z"2) -

x*((-2(y"2)) / ((x72)*(z72)))]

julia> eval(Meta.parse(as))
Df (generic function with 1 method)

It should be pointed out metaprogramming in Julia needs to be done
at the global scope rather than inside a function. This reason for this has to
do with the just-in-time compiler and what’s called the world-age problem.
The main point, however, is that symbolic differentiation avoids any errors
that might occur when finding a derivative by hand.

To test Newton’s method we set xn=copy(x0) and compute

xn = xn - Df(xn...) \ f(xn...)

as many times as needed to approximate the solution.
In the REPL this looks like

Computer Lab 05 Nonlinear Systems

julia> xn=copy(x0)
3-element Vector{Float64}:
1.155
-3.768
0.4616

julia> xn=xn-Df(xn...)\f(xn...)

3-element Vector{Num}:
1.3135088947604612
-3.734528792976971
0.5079657717780771

julia> xn=xn-Df(xn...)\f(xn...)

3-element Vector{Num}:
1.299477798069595
-3.496119553399677
0.49982960484484773

julia> xn=xn-Df(xn...)\f(xn...)

3-element Vector{Num}:
1.300005467488836
-3.4998237583470253
0.5000023177811371

julia> xn=xn-Df(xn...)\f(xn...)

3-element Vector{Num}:
1.3000054447010043
-3.499824561987055
0.5000022728764185

Note that the up-arrow key followed by (enter) was repeatedly pressed to
iterate the recurrence. As the displayed value didn’t change in the last
iteration we conclude the method has converged to all available digits.

Computer Lab 05 Nonlinear Systems

Submitting Your Work

For this lab two things should be uploaded for grading;:

e A program that performs five iterations of Newton’s method.

e The output from running that program.

To help with the items above, we describe the steps needed to complete
them for the example equation (3.2) in detail.

After copying the relevant lines from the REPL and adding a loop to

repeat the Newton iteration we obtain the program

ook W

© o N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23

newton3d.jl -- Perform five iterations of Newton's method
fl(x,y,z) = -3x~(-3)*y™(-3)*z"3 +
xX*y~(-3)*z™(-2) - 0.9812 + x"3*z
f2(x,y,z) = -x"2*%z"(-1) + 3x*z"2 + 2.405
f3(x,y,z) = -2x*z"3 + z + 23.38 -
2XN(-1)*y"2%¥z7(-1) + 3x7N(-1)*y"2*z
f(x,y,z) = [fl(x,y,z), f2(x,y,z), f3(x,y,z)]
x0 = [1.155, -3.768, 0.4616]

using Symbolics

@variables x,y,z
Dfsym=Symbolics.jacobian(f(x,y,z),[x,y,z])
as="Df(x,y,z)="*string(Dfsym)

eval (Meta.parse(as))

xn=copy (x0)
for n=1:5
global xn=xn-Df(xn...)\f(xn...)
println("“n=",n)
display(xn)
println()
end

The formula for f1 has been split with a dangling binary operator so it
continues from line 2 to 3. The formula for f3 has been split between lines

7

Computer Lab 05 Nonlinear Systems

5 and 6 in a similar way. When I first learned Julia, I found the need for
global in line 19 surprising because it was not needed in the REPL. While
variables in the global scope are assumed for convenience inside of loops
in the REPL, to help avoid unintentional errors they need to be explicitly
declared in a Julia program.

Test the program by running it. The output should be

$ julia newton3d.jl

n=1

3-element Vector{Num}:
1.3135088947604612
-3.734528792976971
0.5079657717780771

n=2

3-element Vector{Num}:
1.299477798069595
-3.496119553399677
0.49982960484484773

n=3

3-element Vector{Num}:
1.300005467488836
-3.4998237583470253
0.5000023177811371

n=4

3-element Vector{Num}:
1.3000054447010043
-3.499824561987055
0.5000022728764185

n=5

3-element Vector{Num}:
1.3000054447010159
-3.4998245619868174
0.5000022728764241

To finish this lab modify lines 2 through 9 in newton3d.jl to solve
the correct equation starting with the correct value of xy3. Run the pro-
gram placing the output in newton3d.out and finally convert everything to

8

Computer Lab 05 Nonlinear Systems

Postscript format. A transcript of the commands needed to prepare the
program and output for submission look like

$ julia newton3d.jl >newton3d.out
$ j2pdf -0 submit@5.pdf newton3d.jl newton3d.out

Upload submit@5.pdf for grading to the course management system.
Please reboot the lab computer into Microsoft Windows before leaving.

newton3d.jl -- Perform five iterations of Newton's method
f1(x,y,z) = -3x^(-3)*y^(-3)*z^3 +
 x*y^(-3)*z^(-2) - 0.9812 + x^3*z
f2(x,y,z) = -x^2*z^(-1) + 3x*z^2 + 2.405
f3(x,y,z) = -2x*z^3 + z + 23.38 -
 2x^(-1)*y^2*z^(-1) + 3x^(-1)*y^2*z
f(x,y,z) = [f1(x,y,z), f2(x,y,z), f3(x,y,z)]

x0 = [1.155, -3.768, 0.4616]

using Symbolics
@variables x,y,z
Dfsym=Symbolics.jacobian(f(x,y,z),[x,y,z])
as="Df(x,y,z)="*string(Dfsym)
eval(Meta.parse(as))

xn=copy(x0)
for n=1:5
	global xn=xn-Df(xn...)\f(xn...)
 println("n=",n)
	display(xn)
	println()
end

