
Computer Lab 06 Numerical Integration

In science and engineering an important goal is to become a skilled prac-
titioner by doing it yourself. The computer labs provide computational
experience related to the analytic theory presented in the lectures.

A Two-stage Runge–Kutta Method

This lab is about using Runge–Kutta methods to approximate the solution
to the differential equation

y′ = f(x, y) where y(x0) = y0

on the interval [a, b] where x0 = a.
Let xn = a + nh where h = (b − a)/N and N is the number of grid

points. Integrate over each of the subintervals [xn, xn+1] as∫ xn+1

xn

y′(x)dx =

∫ xn+1

xn

f(x, y(x))dx.

Applying the fundamental theorem of calculus on the left and the trapezoid
rule on the right yields

y(xn+1)− y(xn) ≈
h

2

(
f(xn, y(xn)) + f(xn+1, y(xn+1))

)
.

The above approximation allows one to approximate y(xn+1) in terms
of y(xn) by solving for ξ such that

ξ = y(xn) +
h

2

(
f(xn, y(xn)) + f(xn+1, ξ)

)
.

and then taking y(xn+1) ≈ ξ. However, one difficulty is that ξ is defined
implicitly and finding it may involve solving a non-linear equation. While
this could be accomplished using Newton’s method, an explicit iteration
can be obtained by replacing ξ on the right by the first order Taylor series

y(xn+1) ≈ y(xn) + hy′(xn) = y(xn) + hf(xn, y(xn)).

Letting yn be the resulting approximation of y(xn) immediately leads to
the numerical scheme

yn+1 = yn +
h

2

(
f(xn, yn) + f(xn+1, yn + hf(xn, yn))

)
.

1

Computer Lab 06 Numerical Integration

The above scheme is known as the RK2 method. Note the nesting of f
inside of f on the right. This composition is characteristic of RK methods.

The Lorenz System

The Lorenz system is an autonomous three-dimensional ordinary differential
equation of the form

dy

dx
= f(y)

with a given initial condition y(0) = y0 where y(x) is a vector in R3 and

f(y) =

 −10y1 + 10y2
28y1 − y2 − y1y3
y1y2 − (8/3)y3

 .

Each person will have a different initial condition y0. Click on the
following link to retrieve the values of your initial condition:

https://fractal.math.unr.edu/~ejolson/466-23/y0/mky0.cgi

Please do not use anyone else’s initial condition for this lab.
To implement the RK2method described above first write a subroutine

to compute the function f(y). In Julia this may be done with the code

1 function f(y)
2 r=[10*(y[2]-y[1]),
3 (28.0-y[3])*y[1]-y[2],
4 y[1]*y[2]-(8/3)*y[3]]
5 return r
6 end

The RK2 Timestep

In order to use RK2 for practical computation first rewrite it as

K1 = hf(xn, yn)

K2 = hf(xn+1, yn +K1)

yn+1 = yn + 1
2

(
K1 +K2

)
.

2

https://fractal.math.unr.edu/~ejolson/466-23/y0/mky0.cgi

Computer Lab 06 Numerical Integration

Since the f in the Lorenz system is does not depend on x the RK2 method
can be simplified as

K1 = hf(yn)

K2 = hf(yn +K1)

yn+1 = yn + 1
2

(
K1 +K2

)
.

Next, write a subroutine to make one RK2 timestep. Using the coefficients
given in the tableaux to compute the ki yields

10 function rk2(y,h)
11 k1=h*f(y)
12 k2=h*f(y+k1)
13 return y+1/2*(k1+k2)
14 end

Note Julia will use multiple dispatch to compile efficient versions of rk2 for
whatever length vectors appear as y in the arguments. The built-in vector
notation then makes the code for solving systems of ordinary differential
equations appear identical to the code for solving scalar equations.

Plotting the Solution

Our goal is to plot an approximation of the solution’s trajectory in phase
space for t ∈ [0, T] where T = 10. This will yield a visualization of what has
commonly been called the Lorenz butterfly in chaos theory and the study
of nonlinear dynamics.

Consider approximating the solution using N = 20480 time steps of
size h = T/N . The result in a sequence of 20480 vectors yn ∈ R3. While
the plotting system would likely handle 20480 points without trouble, it’s
not difficult to imagine lengthier calculations with even more points. Thus,
it is reasonable to plot only a subsample of the total timesteps.

One way to do this is with two nested loops where the outer loop stores
the points to be plotted while the inner loop advances a certain number of
time steps to find the next suitable point for plotting. To make the code
more straight forward, we place the inner loop in a separate subroutine
solve that performs n steps of size h. In particular, we have

3

Computer Lab 06 Numerical Integration

16 function solve(y0,h,n)
17 yn=copy(y0)
18 for j=1:n
19 yn=rk2(yn,h)
20 end
21 return yn
22 end

It’s worth mentioning that line 17 copies the initial condition as yn=copy(y0)
to prevent y0 from getting overwritten. If instead line 17 appeared as yn=y0
this would indicate yn is a pointer referencing y0. In that case any changes
to yn would also change y0. The explicit copy avoids this pitfall.

Before writing the outer loop that repeatedly calls solve we need to
decide how many rk2 steps should be made between the points we plot. One
doesn’t want to plot so many points that the plotting library runs slowly
or out of memory, nor does one want to plot so few points that the graph
no longer appears like a smooth solution to a differential equation.

Given the apparent speed at which the dynamics in the Lorenz equa-
tions evolve and the fact that h = 1/2048, skipping every m = 16 timesteps
between plotted points still yields a smooth curve. On the other hand,
skipping every 16 timesteps reduces the number of points to plot from
N = 20480 to P = 1280 which results in a graph that is efficient to render.

Code to calculate the relevant parameters used in the loops is

24 N=20480
25 T=10
26 h=T/N
27

28 m=16
29 P=N÷m

Note that line 29 includes the Unicode integer division operator ÷ rather
than the usual / which would have resulted in a floating point value. This
character can be entered in the Julia repl by typing \div followed by the
⟨tab⟩ key. If you have difficulty typing ÷ into the editor try cut and paste
from the repl using the mouse.

4

Computer Lab 06 Numerical Integration

One can initialize the arrays in which to store the points for plotting
and write the outer loop as

31 X=zeros(P)
32 Y=zeros(P)
33 Z=zeros(P)
34

35 y0=[-2.20, -3.46, 16.67]
36 yj=copy(y0)
37 for j=1:P
38 global yj=solve(yj,h,m)
39 X[j]=yj[1]
40 Y[j]=yj[2]
41 Z[j]=yj[3]
42 end

The initial condition y0 appearing on line 35 reflects the value when I click
on the web link mentioned earlier. You will have to change this to your
individualized initial condition. Line 38 includes a global declaration to
resolve the ambiguity between yj in the global scope and the possibility of
a local version of yj inside the scope of the loop.

Finally, to create a graph that looks similar to

plot the output using the Plots library.

5

Computer Lab 06 Numerical Integration

44 using Plots
45 plot(X,Y,Z,label="$y0")
46 savefig("butterfly.pdf")

At this point you should have a file called butterfly.pdf stored in your
working directory. If it looks exactly like the above figure, that may mean
you forgot to change the initial condition.

Submitting Your Work

Two things should be uploaded for grading:

• A pdf file lorenz.pdf containing the code lorenz.jl used to generate
the graph butterfly.pdf.

• The graph butterfly.pdf corresponding to your initial condition.

The files butterfly.pdf has already been created and should be in the lab04
subdirectory. The only thing left is to convert lorenz.jl and its output into
a pdf file for upload. In the lab the commands

$ j2pdf -o lorenz.pdf lorenz.jl

may be used to produce a file lorenz.pdf suitable for uploading. You may
check your submission using evince to view the pdf files.

Before leaving don’t forget to close the applications open on your desk-
top and logout. Exit the Julia repl by typing ⟨ctrl⟩-d and then ⟨ctrl⟩-d
again to close the terminal. The editor has a menu at the top. If using one
of the lab computers, please reboot it into Microsoft Windows.

6

lorenz.jl -- Draw the Lorenz Butterfly

function f(y)
 r=[10*(y[2]-y[1]),
 (28.0-y[3])*y[1]-y[2],
 y[1]*y[2]-(8/3)*y[3]]
 return r
end

function rk2(y,h)
 k1=h*f(y)
 k2=h*f(y+k1)
 return y+1/2*(k1+k2)
end

function solve(y0,h,n)
 yn=copy(y0)
 for j=1:n
 yn=rk2(yn,h)
 end
 return yn
end

N=20480
T=10
h=T/N

m=16
P=Nรทm

X=zeros(P)
Y=zeros(P)
Z=zeros(P)

y0=[-2.20, -3.46, 16.67]
yj=copy(y0)
for j=1:P
	global yj=solve(yj,h,m)
	X[j]=yj[1]
	Y[j]=yj[2]
	Z[j]=yj[3]
end

using Plots
plot(X,Y,Z,label="$y0")
savefig("butterfly.pdf")

