Efficiency of ERK Methods versus AB Methods

- 2a. Let $W_{\rm rk}(n)$ be the number of evaluations of f(t,y) necessary for n steps of the classical Runge-Kutta scheme. Find an explicit formula for $W_{\rm rk}(n)$ and write an efficient code implementing this scheme.
- 2b. In a practical implementation of the 3-step Adams–Bashforth method, one could first approximate y_1 and y_2 using the classical Runge–Kutta scheme and then compute y_{n+1} for $n \geq 2$ using

$$y_{n+1} = y_n + \frac{h}{12} (23f(t_n, y_n) - 16f(t_{n-1}, y_{n-1}) + 5f(t_{n-2}, y_{n-2})).$$

Use the techniques of the previous programming assignment to verify numerically that this method is third order.

- 2c. Let $W_{ab}(n)$ be the number of evaluations of f(t, y) necessary for n steps of the 3-step Adams–Bashforth scheme described above. Find an explicit formula for $W_{ab}(n)$.
- 2d. Let $CPU_{rk}(n)$ be the actual CPU time needed to perform n steps of the classical Runge–Kutta method and let $CPU_{ab}(n)$ be the time needed for the 3-step Adams–Bashforth method. Check whether the actual time needed to approximate the initial value problem

$$y' = y^2 \cos(t), \qquad y(0) = 0.8$$

on the interval [0,8] is proportional to the number of function evaluations of f(t,y). In particular, to what extent are the ratios

$$\frac{\text{CPU}_{rk}(n)}{W_{rk}(n)}$$
 and $\frac{\text{CPU}_{ab}(n)}{W_{ab}(n)}$

independent of n and equal?

- 2e. Let x_n be the approximation to y(8) obtained by the classical Runge–Kutta scheme using n equal steps of size h = 8/n and let y_n be the approximation obtained by using the 3-step Adams–Bashforth method. Plot $\log(|x_n y(8)|)$ versus $\log(W_{\rm rk}(n))$ and then and $\log(|y_n y(8)|)$ versus $\log(W_{\rm ab}(n))$ on the same graph. Which scheme is more efficient?
- 2f. [Extra Credit and for Math/CS 667] Repeast 2d using the same computer with an optimizing compiler for a traditional programming language. Did the constant of proportionality change?