Least Squares and Condition Number

Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listings and output. If you choose to work in a group of two, please turn in independently prepared reports.
1a. The data in file01. dat consists of m values for x_{i} and y_{i} one pair of values per line. Plot the points $\left(x_{i}, y_{i}\right)$ from this file on a graph.
1b. Create the matrix A and vector y given by

$$
A=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right] \quad y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

where $n=6$ and m is the number of lines in file01.dat. Find the condition number of $A^{t} A$. You may use the Matlab command cond to do this. Clearly state and define which matrix norm was used to compute the condition number.
1c. The normal equations for the least-squares fit of the polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

to the data in file01. dat are given by $A^{t} A v=A^{t} y$ where $v=\left[\begin{array}{llll}a_{0} & a_{1} & \ldots & a_{n}\end{array}\right]^{t}$. Solve these equations to find a numeric approximation of v. Print your results to 15 digits with format long in Matlab. Use the condition number of $A^{t} A$ to estimate how many digits are correct in your approximation of the least-squares minimizer.
1d. List the Legendre polynomials $P_{k}(x)$ of degree k for $k=0,1, \ldots, 6$.
1e. Let $\beta=\max \left\{x_{i}: i=1, \ldots, n\right\}, \alpha=\min \left\{x_{i}: i=1, \ldots, n\right\}, c=(\beta+\alpha) / 2$ and $d=(\beta-\alpha) / 2$. Let $Q_{k}(x)=P_{k}((x-c) / d)$ to obtain polynomials that are orthogonal on the interval $[\alpha, \beta]$. Create the matrix

$$
B=\left[\begin{array}{ccccc}
Q_{0}\left(x_{1}\right) & Q_{1}\left(x_{1}\right) & Q_{2}\left(x_{1}\right) & \ldots & Q_{n}\left(x_{1}\right) \\
Q_{0}\left(x_{2}\right) & Q_{1}\left(x_{2}\right) & Q_{2}\left(x_{2}\right) & \ldots & Q_{n}\left(x_{2}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Q_{0}\left(x_{m}\right) & Q_{1}\left(x_{m}\right) & Q_{2}\left(x_{m}\right) & \ldots & Q_{n}\left(x_{m}\right)
\end{array}\right] .
$$

where $n=6$ and m is the number of lines in file01. dat. Find the condition number of the matrix $B^{t} B$.
1f. The normal equations for the least-squares fit of the polynomial

$$
p(x)=b_{0} Q_{0}(x)+b_{1} Q_{1}(x)+\cdots+b_{n} Q_{n}(x)
$$

are given by $B^{t} B w=B^{t} y$ where $w=\left[\begin{array}{llll}b_{0} & b_{1} & \ldots & b_{n}\end{array}\right]^{t}$. Solve these equations to find a numeric approximation of w. Use the condition number of $B^{t} B$ to estimate how many digits are correct in your approximation of the least-squares minimizer.
1g. [Extra Credit and for Math/CS 667] Use the definition of $Q_{k}(x)$ to find values for the a_{i} 's in part 1 c directly from the b_{i} 's computed in part 1 f . Which way of computing the a_{i} 's results in a more accurate calculation? Relate the differences in the two ways of computing the a_{i} 's to the condition numbers of $A^{t} A$ and $B^{t} B$.

