Approximation of Derivatives by FFT

1. Let $f : \mathbf{R} \to \mathbf{R}$ be a differentiable function with period 2. Approximate f on the interval [-1, 1] as $f \approx A$ where

$$A(x) = \sum_{j=-N/2+1}^{N/2} y_j e^{i\pi jx} \text{ and } y_j = \frac{1}{N} \sum_{\ell=-N/2+1}^{N/2} f\left(\frac{2\ell}{N}\right) e^{-2\pi i\ell j/N}.$$

Differentiate A to obtain approximations for f', f'' and f'''.

- 2. Modify the approximation in part 1 by setting $y_{N/2} = 0$ to obtain \widetilde{A} . Explain why \widetilde{A} is guaranteed to be real for all values of x.
- **3.** Let $f(x) = \exp(\sin \pi x)$. Compute f', f'' and f''' exactly.
- 4. Define

$$A'_{\ell} = A'\left(\frac{2\ell}{N}\right), \qquad A''_{\ell} = A''\left(\frac{2\ell}{N}\right), \qquad A''_{\ell} = A'''\left(\frac{2\ell}{N}\right),$$
$$\widetilde{A}'_{\ell} = \widetilde{A}'\left(\frac{2\ell}{N}\right), \qquad \widetilde{A}''_{\ell} = \widetilde{A}''\left(\frac{2\ell}{N}\right), \qquad \widetilde{A}''_{\ell} = \widetilde{A}'''\left(\frac{2\ell}{N}\right).$$

Write a program that uses the FFT and inverse FFT to compute these approximations for N = 4, 8, 16. Display your results in a table form. Are the imaginary parts of A'_{ℓ} , A''_{ℓ} and A'''_{ℓ} zero? How about the imaginary parts of \widetilde{A}'_{ℓ} , \widetilde{A}''_{ℓ} and \widetilde{A}'''_{ℓ} ? Which are better approximations? What role does rounding error play?

5. Compute the errors

$$E_k = \left(\frac{1}{N} \sum_{\ell=-N/2+1}^{N/2} \left| A_{\ell}^{(k)} - f^{(k)} \left(\frac{2\ell}{N}\right) \right|^2 \right)^{1/2}$$

and

$$\widetilde{E}_{k} = \left(\frac{1}{N} \sum_{\ell=-N/2+1}^{N/2} \left|\widetilde{A}_{\ell}^{(k)} - f^{(k)} \left(\frac{2\ell}{N}\right)\right|^{2}\right)^{1/2}$$

for k = 1, 2, 3 and $N = 4, 8, \ldots, 65536$. Comment on the quality of the approximations.

6. [Extra Credit] Repeat parts 3 through 5 above for the function $f(x) = \exp(x^2)$. Compare the size of the errors and rate of convergence as $N \to \infty$ in this case to the previous one. Explain any differences or similarities.