Approximation of Derivatives by FFT

1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a differentiable function with period 2 . Approximate f on the interval $[-1,1]$ as $f \approx A$ where

$$
A(x)=\sum_{j=-N / 2+1}^{N / 2} y_{j} e^{i \pi j x} \text { and } y_{j}=\frac{1}{N} \sum_{\ell=-N / 2+1}^{N / 2} f\left(\frac{2 \ell}{N}\right) e^{-2 \pi i \ell j / N} .
$$

Differentiate A to obtain approximations for $f^{\prime}, f^{\prime \prime}$ and $f^{\prime \prime \prime}$.
2. Modify the approximation in part 1 by setting $y_{N / 2}=0$ to obtain \widetilde{A}. Explain why \widetilde{A} is guaranteed to be real for all values of x.
3. Let $f(x)=\exp (\sin \pi x)$. Compute $f^{\prime}, f^{\prime \prime}$ and $f^{\prime \prime \prime}$ exactly.
4. Define

$$
\begin{array}{lll}
A_{\ell}^{\prime}=A^{\prime}\left(\frac{2 \ell}{N}\right), & A_{\ell}^{\prime \prime}=A^{\prime \prime}\left(\frac{2 \ell}{N}\right), & A_{\ell}^{\prime \prime \prime}=A^{\prime \prime \prime}\left(\frac{2 \ell}{N}\right), \\
\widetilde{A}_{\ell}^{\prime}=\widetilde{A}^{\prime}\left(\frac{2 \ell}{N}\right), & \widetilde{A}_{\ell}^{\prime \prime}=\widetilde{A}^{\prime \prime}\left(\frac{2 \ell}{N}\right), & \widetilde{A}_{\ell}^{\prime \prime \prime}=\widetilde{A}^{\prime \prime \prime}\left(\frac{2 \ell}{N}\right) .
\end{array}
$$

Write a program that uses the the FFT and inverse FFT to compute these approximations for $N=4,8,16$. Display your results in a table form. Are the imaginary parts of $A_{\ell}^{\prime}, A_{\ell}^{\prime \prime}$ and $A_{\ell}^{\prime \prime \prime}$ zero? How about the imaginary parts of $\widetilde{A}_{\ell}^{\prime}, \widetilde{A}_{\ell}^{\prime \prime}$ and $\widetilde{A}_{\ell}^{\prime \prime \prime}$? Which are better approximations? What role does rounding error play?
5. Compute the errors

$$
E_{k}=\left(\frac{1}{N} \sum_{\ell=-N / 2+1}^{N / 2}\left|A_{\ell}^{(k)}-f^{(k)}\left(\frac{2 \ell}{N}\right)\right|^{2}\right)^{1 / 2}
$$

and

$$
\widetilde{E}_{k}=\left(\frac{1}{N} \sum_{\ell=-N / 2+1}^{N / 2}\left|\widetilde{A}_{\ell}^{(k)}-f^{(k)}\left(\frac{2 \ell}{N}\right)\right|^{2}\right)^{1 / 2}
$$

for $k=1,2,3$ and $N=4,8, \ldots, 65536$. Comment on the quality of the approximations.
6. [Extra Credit] Repeat parts 3 through 5 above for the function $f(x)=\exp \left(x^{2}\right)$. Compare the size of the errors and rate of convergence as $N \rightarrow \infty$ in this case to the previous one. Explain any differences or similarities.

