
Math/CS 467/667 Final Review

1. What is the difference between implicit and explicit Runge–Kutta schemes? When
would you use one over the other?

Runge–Kutta schemes are usually described using tableaux of the form

c A

bT

An explicit scheme results when A is lower triangular; whereas implicit schemes result when
A is not lower triangular. Explicit schemes are easy to program for non-linear problems;
however, solving a non-linear problem using an implicit scheme requires inversion of a
non-linear function at every time step. On the other hand, implicit schemes have greater
stability properties which allow for much larger time steps when solving stiff problems. In
particular, the domain of stability for a Runge–Kutta method is given by |r(z)| < 1 where

r(z) = 1 + zbT (1− zA)−11 and 1 = (1, 1, . . . , 1).

If A is lower triangular, then r(z) is a polynomial and the domain of stability will always be
a bounded region. Thus, explicit Runge–Kutta methods are never unconditionally stable.

2. What is a divide-and-conquer method? What is their significance and what is the
benefit of using such a strategy? Explain why the fast Fourier transform is fast.

A divide-and-conquer method takes a large problem and divides it into smaller problems
which are easier to solve. These smaller problems may, in turn, be further divided into
even smaller problems until the resulting problems are trivial to solve. Suppose a problem
of size N takes Nk steps to solve but may be broken into two smaller problems of size N/2.
Assuming each of the smaller problems takes (N/2)k steps to solve, the total number of
steps now needed to solve the two smaller problems is

(N/2)k + (N/2)k = 21−kNk

which results in computational savings when k > 1. Moreover, as the smaller problems
are independent of one another, they can be computed in parallel. So divide-and-conquer
methods can not only reduce the total number of steps to solve a problem, but allow those
steps to be performed in parallel.

In the case of the Fourier transform, the computation of size N may be split into two
smaller problems of size M = N/2 as

Nyk =

N−1∑
j=0

xje
−2πijk/N =

∑
even

xje
−2πijk/N +

∑
odd

xje
−2πijk/N

=

N/2−1∑
j=0

x2je
−2πi(2j)k/N +

N/2−1∑
j=0

x2j+1e
−2πi(2j+1)k/N

=

M−1∑
j=0

x2je
−2πijk/M + e−2πik/N

N/2−1∑
j=0

x2j+1e
−2πijk/M .

1

Math/CS 467/667 Final Review

Since each Fourier transform takes N2 number of operations, the number of operations
required to perform the two smaller problems is 2−1N2. As one also needs to add the results
of the two smaller transforms together to find the original transform the total number of
operations is 2−1N2 + N . Now assuming N = 2n for some n, after m subdivisions, the
total number of operations is given by

Tm = 2−m22n +m2n = 2n(2n−m +m)

Successively divided until reaching Fourier transforms of size one yields that

Tn = 2n(1 + n) ≈ N log2(N).

Thus, divide-and-conquer allows one to calculate a Fourier transform with a complexity
that depends almost linearly on the size of the problem rather than as N2.

3. Find the linear stability domain for the first-order backwards difference formula given
by yn+1 = yn + hf(tn+1, yn+1).

Consider the linear differential equation

y′ = λy with y(t0) = y0.

The backwards difference formula yields

yn+1 = yn + hλyn+1 or yn+1 =
1

1− hλ
yn

Solving this recurrence relation for yn obtains

yn =
(1

1− hλ

)n

y0.

Since

yn → 0 if and only if
∣∣∣ 1

1− hλ

∣∣∣ < 1

we conclude, upon identifying z = hλ, that D = { z : |z − 1| > 1 }.

4. State the the Runge–Kutta fourth-order scheme and the Taylor second-order scheme.
Prove the Runge–Kutta scheme is actually higher order than the Taylor scheme.

Consider the initial value problem

y′ = f(t, y) where y(t0) = y0.

The Runge–Kutta scheme is given by

yn+1 = yn + (k1 + 2k2 + 2k3 + k4)/6

where

2

Math/CS 467/667 Final Review

k1 = hf(yn, tn)

k2 = hf(yn + k1/2, tn + h/2)

k3 = hf(yn + k2/2, tn + h/2)

k4 = hf(yn + k3, tn + h)

and the Taylor scheme is given by

yn+1 = yn + hf(yn, tn) +
h2

2

(
fy(yn, tn)f(yn, tn) + ft(yn, tn)

)
.

To show the Taylor is no more than second-order accurate consider the differential equation

y′ = 3t2 where y(0) = 0.

The exact solution to this differential equation is y(t) = t3. Since fy(y, t) = 0 and ft(y, t) =
6t, plugging this solutions into the right side of the Taylor scheme yields

(tn)
3 + h3t2n +

h2

2
6tn = n3h3 + 3n2h3 + 3nh3 = (n3 + 3n2 + 3n)h3.

However, plugging the solution into the left side yields

(tn+1)
3 = (n+ 1)3h3 = (n3 + 3n2 + 3n+ 1)h3.

The truncation error for this specific solution is

ψ = (n3 + 3n2 + 3n+ 1)h3 − (n3 + 3n2 + 3n)h3 = h3.

Therefore at time T = Nh the total error is

|y(T)− yN | = Nh3 = Th2,

which shows that the method is no better than second order.
To show that the Runge–Kutta method is higher order, we need only show it is at

least order 3 even though it is really order 4. The truncation error may be computed
plugging the solution y(t) into the Runge–Kutta numeric scheme as

ψ(h) = y(t+ h)− (y(t) + (κ1 + 2κ2 + 2κ3 + κ4)/6

where

κ1 = hf
(
y(t), t

)
κ2 = hf

(
y(t) + κ1/2, t+ h/2

)
κ3 = hf

(
y(t) + κ2/2, t+ h/2

)
κ4 = hf

(
y(t) + κ3, t+ h

)
3

Math/CS 467/667 Final Review

and then expanding ψ using Taylor’s theorem about h = 0 as

ψ(h) =

4∑
k=0

ψ(k)(0)

k!
hk +R4.

Now, to show the method is at least order 3 one needs to show that ψ(k)(0) = 0 for
k = 0, . . . , 3. The Maple script

1 restart;
2 kernelopts(printbytes=false):
3 g[0]:=y(t+h)-(y(t)+(k1+2*k2+2*k3+k4)/6);
4

5 k4:=h*f(y(t)+k3,t+h);
6 k3:=h*f(y(t)+k2/2,t+h/2);
7 k2:=h*f(y(t)+k1/2,t+h/2);
8 k1:=h*f(y(t),t);
9

10 S:={D(y)(t)=f(y(t),t),D(y)(t+h)=f(y(t+h),t+h)};
11

12 G[0]:=simplify(subs(h=0,g[0])):
13 print(psi(0)=G[0]);
14 for k from 1 to 3
15 do
16 g[k]:=subs(S,diff(g[k-1],h));
17 G[k]:=simplify(subs(h=0,g[k]));
18 print((D@@k)(psi)(0)=G[k]);
19 od:

computes ψ(k)(0) as G[k] in line 17 and produces the output

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> restart;

> kernelopts(printbytes=false):

> g[0]:=y(t+h)-(y(t)+(k1+2*k2+2*k3+k4)/6);

k1 k2 k3 k4

g[0] := y(t + h) - y(t) - ---- - ---- - ---- - ----

6 3 3 6

>

> k4:=h*f(y(t)+k3,t+h);

k4 := h f(y(t) + k3, t + h)

> k3:=h*f(y(t)+k2/2,t+h/2);

k2

k3 := h f(y(t) + ----, t + h/2)

4

Math/CS 467/667 Final Review

2

> k2:=h*f(y(t)+k1/2,t+h/2);

k1

k2 := h f(y(t) + ----, t + h/2)

2

> k1:=h*f(y(t),t);

k1 := h f(y(t), t)

>

> S:={D(y)(t)=f(y(t),t),D(y)(t+h)=f(y(t+h),t+h)};

S := {D(y)(t) = f(y(t), t), D(y)(t + h) = f(y(t + h), t + h)}

>

> G[0]:=simplify(subs(h=0,g[0])):

> print(psi(0)=G[0]);

psi(0) = 0

> for k from 1 to 3

> do

> g[k]:=subs(S,diff(g[k-1],h));

> G[k]:=simplify(subs(h=0,g[k]));

> print((D@@k)(psi)(0)=G[k]);

> od:

D(psi)(0) = 0

(2)

(D)(psi)(0) = 0

(3)

(D)(psi)(0) = 0

> quit

bytes used=2950664, alloc=2555436, time=0.11

The results indicate that ψ(k)(0) = 0 for k = 0, . . . , 3. Note that the loop in line 14 can be
increased to check k = 0, . . . , 4 which further shows the method is fourth order.

5. Consider solving the heat equation ut = uxx on the interval [0, 1] with boundary
conditions u(0, t) = u(1, t) = 0 using forward differences in time and central differences
in space. Why does ∆t ≤ 1

2 (∆x)
2 ensure stability?

Let uni ≈ u(xi, tn) where xi = i∆x and tn = n∆t. Here ∆x = 1/m and i = 0, . . . ,m.
Plugging in the finite difference approximations into the heat equation yields

un+1
j − unj

∆t
=
unj+1 − 2unj + unj−1

∆x2
.

5

Math/CS 467/667 Final Review

Consequently, writing un = (un1 , . . . u
n
m−1) yields u

n+1 = Aun where

A =

1− 2µ µ 0 · · · 0

µ 1− 2µ µ
. . .

...

0
. . .

. . .
. . . 0

...
. . . µ 1− 2µ µ

0 · · · 0 µ 1− 2µ

 and µ =
∆t

(∆x)2
.

It follows that un = Anu0 and the system is stable if and only if ρ(A) ≤ 1. We now turn
our attention to computing the eigenvalues and eigenvectors of the matrix A.

Consider a vector of the form ξ = (α, α2, . . . , αm−1). Then

(A− λI)ξ =

µ+ (1− 2µ− λ)α+ µα2

µα+ (1− 2µ− λ)α2 + µα3

...
µαk−1 + (1− 2µ− λ)αk + µαk+1

...
µαm−3 + (1− 2µ− λ)αm−2 + µαm−1

µαm−2 + (1− 2µ− λ)αm−1 + µαm

−

µ
0
...
0
...
0

µαm

Solving for α so that

µ+ (1− 2µ− λ)α+ µa2 = 0

yields

α± =
−(1− 2µ− λ)±

√
(1− 2µ− λ)2 − 4µ2

2µ
.

Let ξ± = (α±, α
2
±, . . . , α±). Then

A(c1ξ+ + c2ξ−) = −
(
(c1 + c2)µ, 0, . . . , 0, µ(c1α

m
+ + c2α

m
−)

)
.

It follows that solving for λ such that there exists c1 and c2 where

c1 + c2 = 0 and c1α
m
+ + c2α

m
− = 0

yields the eigenvalues. The first equation implies c2 = −c1 from which the second equation
implies am+ = am− . The only way this could happen is if |a+| = |a−| which, in turn, implies
that the square root is imaginary. Therefore, a+ and a− are complex conjugates of each
other and there exists ρ and θ such that

a+ = ρeiθ and a− = ρe−iθ.

Therefore eiθm = e−iθm or e2iθm = 1. Taking θ = kπ/m for k = 1, . . . ,m− 1 yields m− 1
linearly independent eigenvectors of the form c1ξ+ + c2ξ−. As A ∈ R(m−1)×(m−1) there
are at most m− 1 linearly independent eigenvectors. Hence, we have found them all.

6

Math/CS 467/667 Final Review

Now, the square root is imaginary only when λ is real and |1− 2µ− λ| < 2µ. Thus,

0 < 1− λ < 4µ or 1− 4µ < λ < 1.

To ensure that |λ| ≤ 1 it is sufficient that

1− 4µ ≥ −1 or ∆t ≤ 1

2
(∆x)2.

At this point it is possible to directly calculate the eigenvalues from the equation

µ+ (1− 2µ− λ)eπik/m + µe2πik/m = 0

as given on page 482 in Chapter 12 of Faires and Burden; however, in the interest of brevity
this is omitted here.

6. Find the order of the following quadrature formula:

(i)

∫ 1

0

f(τ)dτ ≈ 1

8
f(0) +

3

8
f
(1
3

)
+

3

8
f
(2
3

)
+

1

8
f(1)

To determine the order, we set f(x) = xk and find the largest K such that the formula is
exact for all k ≤ K. The Maple script

1 restart;
2 kernelopts(printbytes=false):
3 T:=f->int(f(tau),tau=0..1)-(1/8*f(0)+3/8*f(1/3)+3/8*f(2/3)+1/8*f(1));
4 T(x->1);
5 T(x->x);
6 T(x->x^2);
7 T(x->x^3);
8 T(x->x^4);

produces the output

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> restart;

> kernelopts(printbytes=false):

> T:=f->int(f(tau),tau=0..1)-(1/8*f(0)+3/8*f(1/3)+3/8*f(2/3)+1/8*f(1));

1

/

|

T := f -> | f(tau) dtau - 1/8 f(0) - 3/8 f(1/3) - 3/8 f(2/3) - 1/8 f(1)

|

/

0

7

Math/CS 467/667 Final Review

> T(x->1);

0

> T(x->x);

0

> T(x->x^2);

0

> T(x->x^3);

0

> T(x->x^4);

-1

270

> quit

bytes used=526672, alloc=458668, time=0.02

which shows the method is fourth order.

(ii)

∫ 1

0

f(τ)dτ ≈ 2

3
f
(1
4

)
− 1

3
f
(1
2

)
+

2

3
f
(3
4

)
Following the same pattern as above, the Maple script

1 restart;
2 kernelopts(printbytes=false):
3 T:=f->int(f(tau),tau=0..1)-(2/3*f(1/4)-1/3*f(1/2)+2/3*f(3/4));
4 T(x->1);
5 T(x->x);
6 T(x->x^2);
7 T(x->x^3);
8 T(x->x^4);

produces the output

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> restart;

> kernelopts(printbytes=false):

> T:=f->int(f(tau),tau=0..1)-(2/3*f(1/4)-1/3*f(1/2)+2/3*f(3/4));

1

/

|

T := f -> | f(tau) dtau - 2/3 f(1/4) + 1/3 f(1/2) - 2/3 f(3/4)

|

/

0

8

Math/CS 467/667 Final Review

> T(x->1);

0

> T(x->x);

0

> T(x->x^2);

0

> T(x->x^3);

0

> T(x->x^4);

7/960

> quit

bytes used=525784, alloc=458668, time=0.01

which shows this method is also fourth order.

7. Let fn = f(xn) where xn = nh and f is a smooth function. Find values for the
constants A, B, C and D such that the approximation

f ′′(xn) ≈
1

h2
(
Afn+3 +Bfn+2 + Cfn+1 +Dfn

)
is as accurate as possible. What is the order of the approximation?

Define

τ(h) = h2f ′′(x)− (Af(x+ 3h) +Bf(x+ 2h) + Cf(x+ h) +Df(x))

and then expand τ in Taylor series about h = 0. We then solve for A, B, C and D so that
as many of the low-order terms of the power series vanish as possible. Since there are four
unknowns, it is generally possible to make the four coefficients of 1, h, h2 and h3 vanish.
The order of the method would then be h4/h2 or order 2. The Maple script

1 restart;
2 kernelopts(printbytes=false):
3 T:=h^2*diff(f(x),x$2)-(A*f(x+3*h)+B*f(x+2*h)+C*f(x+h)+E*f(x));
4 S:=series(T,h,5);
5 eq1:=simplify(coeff(S,h,0)/f(x))=0;
6 eq2:=simplify(coeff(S,h,1)/diff(f(x),x))=0;
7 eq3:=simplify(coeff(S,h,2)/diff(f(x),x$2))=0;
8 eq4:=simplify(coeff(S,h,3)/diff(f(x),x$3))=0;
9 eq5:=simplify(coeff(S,h,4)/diff(f(x),x$4))=0;

10 S2:=solve({eq1,eq2,eq3,eq4},{A,B,C,E});
11 subs(S2,eq5);

9

Math/CS 467/667 Final Review

Computes the series expansion of τ and then solves for the constants. Note that the
constant D has been replaced by E in the script because Maple reserves the letter D for
derivative. The output of the script is

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> restart;

> kernelopts(printbytes=false):

> T:=h^2*diff(f(x),x$2)-(A*f(x+3*h)+B*f(x+2*h)+C*f(x+h)+E*f(x));

/ 2 \

2 |d |

T := h |--- f(x)| - A f(x + 3 h) - B f(x + 2 h) - C f(x + h) - E f(x)

| 2 |

\dx /

> S:=series(T,h,5);

S := (-C f(x) - A f(x) - E f(x) - B f(x)) +

(-2 B D(f)(x) - 3 A D(f)(x) - C D(f)(x)) h +

/ / 2 \ \

| (2) (2) |d | (2) |

|-2 B (D)(f)(x) - 9/2 A (D)(f)(x) + |--- f(x)| - 1/2 C (D)(f)(x)|

| | 2 | |

\ \dx / /

2 (3) (3) (3) 3

h + (-9/2 A (D)(f)(x) - 1/6 C (D)(f)(x) - 4/3 B (D)(f)(x)) h +

(4) (4) (4) 4

(-27/8 A (D)(f)(x) - 2/3 B (D)(f)(x) - 1/24 C (D)(f)(x)) h +

5

O(h)

> eq1:=simplify(coeff(S,h,0)/f(x))=0;

eq1 := -C - A - E - B = 0

> eq2:=simplify(coeff(S,h,1)/diff(f(x),x))=0;

eq2 := -2 B - 3 A - C = 0

> eq3:=simplify(coeff(S,h,2)/diff(f(x),x$2))=0;

9 A

eq3 := -2 B - --- + 1 - C/2 = 0

2

> eq4:=simplify(coeff(S,h,3)/diff(f(x),x$3))=0;

9 A 4 B

eq4 := - --- - C/6 - --- = 0

2 3

10

Math/CS 467/667 Final Review

> eq5:=simplify(coeff(S,h,4)/diff(f(x),x$4))=0;

27 A 2 B C

eq5 := - ---- - --- - ---- = 0

8 3 24

> S2:=solve({eq1,eq2,eq3,eq4},{A,B,C,E});

S2 := {A = -1, E = 2, B = 4, C = -5}

> subs(S2,eq5);

11

-- = 0

12

> quit

bytes used=1401116, alloc=1179432, time=0.04

which shows the choice

A = −1, B = 4, C = −5 and D = 2

obtains a method of order 2. The script ends by checking that the above choice of constants
yields the non-zero value of 11/12 for the coefficient on h4, which verifies the method is no
greater than second order.

8. Find weights w1, w2 and w3 such that the approximation formula∫ 3

0

f(x)dx ≈ w1f(0) + w2f(2) + w3f(4)

is exact for all polynomials of degree 2. Comment on the fact that f(4) is evaluated
outside the interval of integration.

The Maple script

1 restart;
2 kernelopts(printbytes=false):
3 T:=f->int(f(tau),tau=0..3)-(w1*f(0)+w2*f(2)+w3*f(4));
4 eq1:=T(x->1)=0;
5 eq2:=T(x->x)=0;
6 eq3:=T(x->x^2)=0;
7 solve({eq1,eq2,eq3},{w1,w2,w3});

produces the output

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> restart;

> kernelopts(printbytes=false):

11

Math/CS 467/667 Final Review

> T:=f->int(f(tau),tau=0..3)-(w1*f(0)+w2*f(2)+w3*f(4));

3

/

|

T := f -> | f(tau) dtau - w1 f(0) - w2 f(2) - w3 f(4)

|

/

0

> eq1:=T(x->1)=0;

eq1 := 3 - w1 - w2 - w3 = 0

> eq2:=T(x->x)=0;

eq2 := 9/2 - 2 w2 - 4 w3 = 0

> eq3:=T(x->x^2)=0;

eq3 := 9 - 4 w2 - 16 w3 = 0

> solve({eq1,eq2,eq3},{w1,w2,w3});

{w3 = 0, w1 = 3/4, w2 = 9/4}

> quit

bytes used=769468, alloc=655240, time=0.04

which shows that

w1 =
3

4
, w2 =

9

4
and w3 = 0

is the unique choice of wi’s such that the approximation formula is exact for all polynomial
of degree 2. It is interesting that the w3 = 0. This is a coincidence and not because 4 was
outside the interval. In general, we would expect w3 ̸= 0. For example, finding the weights
ηi such that ∫ 3

0

f(x)dx ≈ η1f(0) + η2f(3) + η3f(4)

is exact for polynomials of degree two gives that

η1 =
9

8
, η2 = 3 and η3 = −9/8.

Note that quadrature formula whose weights have minus signs in them are generally less
stable numerically than formula consisting of all positive weights. In this case the weight
η3 for the function evaluated outside in interval of integration is negative. For reference
the above calculations were performed by the Maple script

1 restart;
2 kernelopts(printbytes=false):
3 T:=f->int(f(tau),tau=0..3)-(eta1*f(0)+eta2*f(3)+eta3*f(4));
4 eq1:=T(x->1)=0;
5 eq2:=T(x->x)=0;
6 eq3:=T(x->x^2)=0;
7 solve({eq1,eq2,eq3},{eta1,eta2,eta3});

12

Math/CS 467/667 Final Review

which produced the output

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> restart;

> kernelopts(printbytes=false):

> T:=f->int(f(tau),tau=0..3)-(eta1*f(0)+eta2*f(3)+eta3*f(4));

3

/

|

T := f -> | f(tau) dtau - eta1 f(0) - eta2 f(3) - eta3 f(4)

|

/

0

> eq1:=T(x->1)=0;

eq1 := 3 - eta1 - eta2 - eta3 = 0

> eq2:=T(x->x)=0;

eq2 := 9/2 - 3 eta2 - 4 eta3 = 0

> eq3:=T(x->x^2)=0;

eq3 := 9 - 9 eta2 - 16 eta3 = 0

> solve({eq1,eq2,eq3},{eta1,eta2,eta3});

{eta1 = 9/8, eta3 = -9/8, eta2 = 3}

> quit

bytes used=770212, alloc=655240, time=0.02

9. Suppose y′ = f(y, t) and define g(s) = f
(
y(s), s

)
. Write the 2nd order Taylor poly-

nomial given by

p2(s) = g(tn) + g′(tn)(s− tn) +
1

2
g′′(tn)(s− tn)

2

in terms of the function f .

Calculating yields

g(tn) = f
(
y(tn), tn

)
g′(tn) = fy

(
y(tn), tn

)
y′(tn) + ft

(
y(tn), tn

)
= fy

(
y(tn), tn

)
f
(
y(tn), tn

)
+ ft

(
y(tn), tn

)
g′′(tn) = fyy

(
y(tn), tn

)
f
(
y(tn), tn

)2
+ fyt

(
y(tn), tn

)
f
(
y(tn), tn

)
+ fy

(
y(tn), tn

)2
f
(
y(tn), tn

)
+ fy

(
y(tn), tn

)
ft
(
y(tn), tn

)
13

Math/CS 467/667 Final Review

+ fyt
(
y(tn), tn

)
f
(
y(tn), tn

)
+ ftt

(
y(tn), tn

)
= fyy

(
y(tn), tn

)
f
(
y(tn), tn

)2
+ 2fyt

(
y(tn), tn

)
f
(
y(tn), tn

)
+ fy

(
y(tn), tn

)2
f
(
y(tn), tn

)
+ fy

(
y(tn), tn

)
ft
(
y(tn), tn

)
+ ftt

(
y(tn), tn

)
Therefore

p2(s) = f
(
y(tn), tn

)
+
{
fy
(
y(tn), tn

)
f
(
y(tn), tn

)
+ ft

(
y(tn), tn

)}
(s− tn)

+
1

2

{
fyy

(
y(tn), tn

)
f
(
y(tn), tn

)2
+ 2fyt

(
y(tn), tn

)
f
(
y(tn), tn

)
+ fy

(
y(tn), tn

)2
f
(
y(tn), tn

)
+ fy

(
y(tn), tn

)
ft
(
y(tn), tn

)
+ ftt

(
y(tn), tn

)}
(s− tn)

2

assuming I didn’t make a typo typing it in. For reference, the calculation can also be done
with Maple

1 restart;
2 kernelopts(printbytes=false):
3 g:=s->f(y(s),s);
4 p2:=g(t_n)+D(g)(t_n)(s-t_n)+(1/2)*(D@@2)(g)(t_n)(s-t_n)^2;

with output

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> restart;

> kernelopts(printbytes=false):

> g:=s->f(y(s),s);

g := s -> f(y(s), s)

> p2:=g(t_n)+D(g)(t_n)(s-t_n)+(1/2)*(D@@2)(g)(t_n)(s-t_n)^2;

p2 := f(y(t_n), t_n) + D[1](f)(y(t_n), t_n)(s - t_n) %1

+ D[2](f)(y(t_n), t_n)(s - t_n) + 1/2 (

(D[1, 1](f)(y(t_n), t_n)(s - t_n) %1 + D[1, 2](f)(y(t_n), t_n)(s - t_n)) %1

(2)

+ D[1](f)(y(t_n), t_n)(s - t_n) (D)(y)(t_n)(s - t_n)

2

+ D[1, 2](f)(y(t_n), t_n)(s - t_n) %1 + D[2, 2](f)(y(t_n), t_n)(s - t_n))

%1 := D(y)(t_n)(s - t_n)

14

Math/CS 467/667 Final Review

> quit

bytes used=1175304, alloc=982860, time=0.05

10. Suppose y′ = f(y) where

f(y) =

 −y2 − y3
y1 + ay2

b+ y3(y1 − c)

with a, b and c constant. Find d

dtf(y(t)).

The Maple script

1 restart;
2 kernelopts(printbytes=false):
3 f:=[-y2(t)-y3(t),y1(t)+a*y2(t),b+y3(t)*(y1(t)-c)];
4 S:=[seq(diff(y||k(t),t)=f[k],k=1..3)];
5 r1:=diff(f,t);
6 r2:=subs(S,r1);
7 r3:=subs({y1(t)=y1,y2(t)=y2,y3(t)=y3},r2);
8 Vector(r3);

produced the output

|\^/| Maple 9.5 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> restart;

> kernelopts(printbytes=false):

> f:=[-y2(t)-y3(t),y1(t)+a*y2(t),b+y3(t)*(y1(t)-c)];

f := [-y2(t) - y3(t), y1(t) + a y2(t), b + y3(t) (y1(t) - c)]

> S:=[seq(diff(y||k(t),t)=f[k],k=1..3)];

d d

S := [-- y1(t) = -y2(t) - y3(t), -- y2(t) = y1(t) + a y2(t),

dt dt

d

-- y3(t) = b + y3(t) (y1(t) - c)]

dt

> r1:=diff(f,t);

/d \ /d \ /d \ /d \

r1 := [-|-- y2(t)| - |-- y3(t)|, |-- y1(t)| + a |-- y2(t)|,

\dt / \dt / \dt / \dt /

/d \ /d \

|-- y3(t)| (y1(t) - c) + y3(t) |-- y1(t)|]

\dt / \dt /

15

Math/CS 467/667 Final Review

> r2:=subs(S,r1);

r2 := [-y1(t) - a y2(t) - b - y3(t) (y1(t) - c),

-y2(t) - y3(t) + a (y1(t) + a y2(t)),

(b + y3(t) (y1(t) - c)) (y1(t) - c) + y3(t) (-y2(t) - y3(t))]

> r3:=subs({y1(t)=y1,y2(t)=y2,y3(t)=y3},r2);

r3 := [-y1 - a y2 - b - y3 (y1 - c), -y2 - y3 + a (y1 + a y2),

(b + y3 (y1 - c)) (y1 - c) + y3 (-y2 - y3)]

> Vector(r3);

[-y1 - a y2 - b - y3 (y1 - c)]

[]

[-y2 - y3 + a (y1 + a y2)]

[]

[(b + y3 (y1 - c)) (y1 - c) + y3 (-y2 - y3)]

> quit

bytes used=526628, alloc=458668, time=0.02

Therefore the answer is

d

dt
f(y(t)) =

 −y1 − ay2 − b− y3(y1 − c)
−y2 − y3 + a(y1 + ay2)(

b+ y3(y1 − c)
)
(y1 − c)− y3(y2 + y3)

 .
11. Consider the two-point boundary value problem

y′′ = p(x)y′ + q(x)y + r(x) where y(a) = α and y(b) = β.

Use the finite differences

y′(x) ≈ y(x+ h)− y(x− h)

2h
and y′′(x) ≈ y(x+ h)− 2y(x) + y(x− h)

h2
.

to construct matrix A and vector b such that the vector y = (y1, . . . , yn−1) which
solves Ay = b approximates the solution to the differential equation as yj ≈ y(xj)
where xj = a+ jh and h = (b− a)/n. What is the order of the approximation?

Plugging the finite difference approximations into the differential equation and writing
pj = p(xj), qj = q(xj) and rj = r(xj) gives

yj+1 − 2yj + yj−1

h2
= pj

yj+1 − yj−1

2h
+ qjyj + rj .

Further clearing the denominator(
2− hpj

)
yj+1 −

(
4 + 2h2qj

)
yj +

(
2 + hpj

)
yj−1 = 2h2rj .

16

Math/CS 467/667 Final Review

Since y0 = α and yn = β, then in matrix form we have

A =

−4− 2h2q1 2− hp1 0 · · · 0

2 + hp2 −4− 2h2q2 2− hp2
. . .

...

0
. . .

. . .
. . . 0

...
. . . 2 + hpm−2 −4− 2h2qm−2 2− hpm−2

0 · · · 0 2 + hpm−1 −4− 2h2qm−1

and

b =

2h2r1 − (2 + hp1)α

2h2r2
...

2h2rm−2

2h2rm−1 − (2− hpm−1)β

 .
Please observe that that the boundary conditions have been placed in the first and last
components of the vector b. To compute the order note by Taylor’s theorem that

y(x± h) = y(x)± hy′(x) +
h2

2
y′′(x)± h3

6
y′′′(ξ±)

for some ξ+ ∈ (x, x+ h) and ξ− ∈ (x− h, x). Therefore

y′(x)− y(x+ h)− y(x− h)

2h
= y′(x)− 2hy′(x) + (h3/6)(y′′′(ξ+) + y′′′(ξ−))

2h

=
h2

12

(
(y′′′(ξ+) + y′′′(ξ−)

)
= O(h2)

Expanding Taylor’s series one term more yields

y(x± h) = y(x)± hy′(x) +
h2

2
y′′(x)± h3

6
y′′′(x) +

h4

24
y(4)(η±)

for some η+ ∈ (x, x+ h) and η− ∈ (x− h, x). Therefore

y′′(x)− y(x+ h)− 2y(x) + y(x− h)

h2
= y′′(x)− h2y′′(x) + (h4/24)(y(4)(η+) + y(4)(η−))

h2

=
h2

24

(
(y(4)(η+) + y(4)(η−)

)
= O(h2).

As the finite differences for y′(x) and y′′(x) are both second order, the approximation of
the two-point boundary value problem is also second order.

17

