Rössler Oscillator

1. The Rössler System is a three dimensional ordinary differential equation of the form $d y / d t=f(y)$ with a given initial condition $y\left(t_{0}\right)=y_{0}$ where $y(t) \in \mathbf{R}^{3}$ and

$$
f(y)=\left[\begin{array}{c}
-y_{2}-y_{3} \\
y_{1}+a y_{2} \\
b+y_{3}\left(y_{1}-c\right)
\end{array}\right] \quad \text { where } \quad y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

with $a=b=0.2$ and $c=5.7$. Let Y^{h} be an approximation of $y(T)$ obtained using a step size of $h=\left(T-t_{0}\right) / n$. Define the error

$$
E_{h}=\left\|Y^{h}-y(T)\right\|=\left\{\sum_{i=1}^{3}\left(Y_{i}^{h}-y_{i}(T)\right)^{2}\right\}^{1 / 2}
$$

Show that if $E_{h} \leq K h^{k}$ then

$$
\left\|Y^{h}-Y^{h / 2}\right\| \leq K\left\{1+\frac{1}{2^{k}}\right\} h^{k}
$$

2. Write a program to approximate $y(T)$ using Euler's forward difference method and the initial condition

$$
y_{0}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \text { when } \quad t_{0}=0 \quad \text { and } \quad T=1
$$

Compute Y^{h} for $h=T / n$ with $n=64,128,256,512, \ldots, 65536$.
3. Graph $\log \left\|Y^{h}-Y^{h / 2}\right\|$ versus $\log h$ to verify the order of convergence for Euler's method numerically.
4. Computer Y^{h} using the Taylor methods of order 2 and 3 and verify the order of convergence by graphing $\log \left\|Y^{h}-Y^{h / 2}\right\|$ versus $\log h$.
5. Approximate $y(10)$ to four decimal places. Indicate what method you used and how many steps were needed. Is it possible to achieve this accuracy using Euler's method? Can you find $y(100)$?

