14.6a Suppose $f(t)$ is a smooth function and $y_{k}=f(k h)$ for $k \in\{-n,-n+1, \ldots, 0, \ldots n\}$. Show that the parabola $p(t)=a t^{2}+b t+c$ optimally fitting these data points via least squares satisfies

$$
p^{\prime}(0)=\sum_{k} k y_{k} / \sum_{k} h k^{2} .
$$

For notational convenience write $t_{k}=k h$. Least squares finds a, b and c which minimize the function

$$
\Phi(a, b, c)=\sum_{k}\left(p\left(t_{k}\right)-y_{k}\right)^{2}
$$

Since the index set for k is symmetric about the origin then

$$
\sum_{k} t_{k}^{j}=0 \quad \text { for every } \quad j \text { odd. }
$$

At the minimum, setting the partial derivative equal to zero yields

$$
\begin{aligned}
\partial_{b} \Phi(a, b, c) & =2 \sum_{k}\left(p\left(t_{k}\right)-y_{k}\right) t_{k}=2 \sum_{k}\left(a t_{k}^{3}+b t_{k}^{2}+c t_{k}\right)-2 \sum_{k} y_{k} t_{k} \\
& =2 b \sum_{k} t_{k}^{2}-2 \sum_{k} y_{k} t_{k}=2 b \sum_{k} h^{2} k^{2}-2 \sum_{k} y_{k} h k=0 .
\end{aligned}
$$

Therefore

$$
b=\sum_{k} y_{k} h k / \sum_{k} h^{2} k^{2}=\sum_{k} k y_{k} / \sum_{k} h k^{2}
$$

as required.
14.6b Use this formula to propose approximations of $f^{\prime}(0)$ when $n=1,2,3$.

When $n=1$ approximate

$$
f^{\prime}(0) \approx p^{\prime}(0)=\sum_{k=-1}^{1} k y_{k} / \sum_{k=-1}^{1} h k^{2}=\frac{f(h)-f(-h)}{2 h}
$$

When $n=2$ approximate

$$
f^{\prime}(0) \approx p^{\prime}(0)=\sum_{k=-2}^{2} k y_{k} / \sum_{k=-2}^{2} h k^{2}=\frac{2 f(2 h)+f(h)-f(-h)-2 f(-2 h)}{10 h} .
$$

When $n=3$ approximate

$$
f^{\prime}(0) \approx p^{\prime}(0)=\frac{3 f(3 h)+2 f(2 h)+f(h)-f(-h)-2 f(-2 h)-3 f(-3 h)}{28 h}
$$

14.6c Motivate the following formula for differentiation by integration:

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{3}{2 h^{3}} \int_{-h}^{h} t f(t) d t
$$

By Taylor's theorem

$$
f(t)=f(0)+t f^{\prime}(0)+\frac{t^{2}}{2} f^{\prime \prime}(0)+\frac{t^{3}}{6} f^{\prime \prime \prime}(\xi)
$$

for some ξ between 0 and t. Consequently, since the integral of an odd power of t over a symmetric interval is zero, we obtain

$$
\begin{aligned}
\int_{-h}^{h} t f(t) d t & =\int_{-h}^{h}\left(t f(0)+t^{2} f^{\prime}(0)+\frac{t^{3}}{2} f^{\prime \prime}(0)+\frac{t^{4}}{6} f^{\prime \prime \prime}(\xi)\right) d t \\
& =\int_{-h}^{h}\left(t^{2} f^{\prime}(0)+\frac{t^{4}}{6} f^{\prime \prime \prime}(\xi)\right) d t=\frac{2 h^{3}}{3} f^{\prime}(0)+\int_{-h}^{h} \frac{t^{4}}{6} f^{\prime \prime \prime}(\xi) d t
\end{aligned}
$$

Since f is smooth than $f^{\prime \prime \prime}$ is continuous on $[-1,1]$. Let M be the bound such that

$$
\left|f^{\prime \prime \prime}(t)\right| \leq M \quad \text { for } \quad t \in[-1,1]
$$

It follows that

$$
\left|\frac{3}{2 h^{3}} t f(t) d t-f^{\prime}(0)\right|=\left|\frac{3}{2 h^{3}} \int_{-h}^{h} \frac{t^{4}}{6} f^{\prime \prime \prime}(\xi) d t\right| \leq \frac{3}{2 h^{3}} \frac{2 h^{5}}{30} M \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

14.6d Show that when $h>0$ that

$$
\frac{3}{2 h^{3}} \int_{-h}^{h} t f(t) d t=f^{\prime}(0)+\mathcal{O}\left(h^{2}\right)
$$

This is exactly what I showed in the previous problem in order to motivate the differentiation by integration formula.
14.6e Denote

$$
D_{h} f=\frac{3}{2 h^{3}} \int_{-h}^{h} t f(t) d t
$$

Suppose, thanks to noise, we actually observe $f^{\varepsilon}(t)$ satisfying $\left|f(t)-f^{\varepsilon}(t)\right| \leq \varepsilon$ for all t. Show that

$$
\left|D_{h} f^{\varepsilon}-f^{\prime}(0)\right| \leq \frac{3 \varepsilon}{2 h}+\mathcal{O}\left(h^{2}\right)
$$

Math/CS 467/667 Homework 1 Solutions Part 2

Estimate

$$
\begin{aligned}
\left|D_{h} f^{\varepsilon}-D_{h} f\right| & =\left|\frac{3}{2 h^{3}} \int_{-h}^{h} t\left(f^{\varepsilon}(t)-f(t)\right) d t\right| \\
& \leq \frac{3}{2 h^{3}} \int_{-h}^{h}|t| \varepsilon d t=\frac{3}{2 h^{3}} \frac{2 h^{2}}{2} \varepsilon=\frac{3 \varepsilon}{2 h}
\end{aligned}
$$

Consequently, by the triangle inequality

$$
\left|D_{h} f^{\varepsilon}-f^{\prime}(0)\right| \leq\left|D_{h} f^{\varepsilon}-D_{h} f\right|+\left|D_{h} f-f^{\prime}(0)\right| \leq \frac{3 \varepsilon}{2 h}+\mathcal{O}\left(h^{2}\right)
$$

14.6f Suppose the second term in the previous part is bounded above by $M h^{2} / 10$ as is the case when $\left|f^{\prime \prime \prime}(t)\right| \leq M$ everywhere. Show that with the right choice of h, the integral approximation is within $\mathcal{O}\left(\varepsilon^{2 / 3}\right)$ of $f^{\prime}(0)$.
Take $h=\varepsilon^{1 / 3}$. Then

$$
\left|D_{h} f^{\varepsilon}-f^{\prime}(0)\right| \leq \frac{3 \varepsilon}{2 h}+\frac{M h^{2}}{10}=\frac{3 \varepsilon}{2 \varepsilon^{1 / 3}}+\frac{M \varepsilon^{2 / 3}}{10}=\mathcal{O}\left(\varepsilon^{2 / 3}\right)
$$

