
Math/CS 467/667 Homework 1 Solutions Part 1

14.1 Show that the midpoint rule is exact for f(x) = mx+c along any interval x ∈ [a, b].

Let f(x) = mx+ c. The exact integral along the interval [a, b] is∫ b

a

f(x)dx =

∫ b

a

(mx+ c)dx =
(m
2
x2 + cx

)∣∣∣b
a
=

m

2
(b2 − a2) + c(b− a).

On the other hand, the midpoint rule gives

mprule(a, b, f) = f
(a+ b

2

)
(b− a) =

{
m
(a+ b

2

)
+ c

}
(b− a)

=
m

2
(b+ a)(b− a) + c(b− a) =

m

2
(b2 − a2) + c(b− a).

As these two formula agree then the rule is exact for f(x) = mx+ c.
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14.2 Derive α, β, and x1 such that the following quadrature rule holds exactly for
polynomials of degree less than or equal 2.∫ 2

0

f(x)dx ≈ αf(0) + βf(x1).

Note that polynomials of degree two are specified by three coefficients and there are three
unknowns α, β and x1 to solve for. Solving for these unknowns such that polynomials
of degree two are exact is equivalent to solving so that the the formula is exact for the
functions {1, x, x2}. Thus, we solve the system∫ 2

0

1 dx = α · 1 + β · 1 = 2,∫ 2

0

x dx = α · 0 + β · x1 = 2,∫ 2

0

x2 dx = α · 02 + β · x2
1 = 8/3.

Eliminating β from the second and third equations gives

2

x1
= β =

8

3x2
1

.

Consequently, x1 = 4/3. Substituting in the second equation implies β = 2/x1 = 3/2.
Now, solve the first equation for α in terms of β to obtain α = 2− β = 2− 3/2 = 1/2. It
follows that the desired quadrature formula is given by∫ 2

0

f(x)dx ≈ 1

2
f(0) +

3

2
f(4/3).
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14.4a Some quadrature problems can be solved by applying a suitable change of variables.
Our strategies for quadrature break down when the interval of integration is not
of finite length. Derive the following relationships for f :R → R.∫ ∞

−∞
f(x)dx =

∫ 1

−1

f
( t

1− t2

) 1 + t2

(1− t2)2
dt,∫ ∞

0

f(x)dx =

∫ 1

0

f(− log t)

t
dt∫ ∞

c

f(x)dx =

∫ 1

0

f
(
c+

t

1− t

) 1

(1− t)2
dt.

How can these formulas be used to integrate over intervals of infinite length? What
might be a drawback of evenly spacing t samples?

To obtain the first equation substitute

x =
t

1− t2
so that dx =

(1− t2)− t(−2t)

(1− t2)2
dt =

1 + t2

(1− t2)2
dt.

Since

lim
t↘−1

t

1− t2
= lim

t↘−1

t

1− t

1

1 + t
=

−1

2
· ∞ = −∞

and

lim
t↗1

t

1− t2
= lim

t↗1

t

1 + t

1

1− t
=

1

2
· ∞ = ∞

the limits of integration transform as required and the result follows.

To obtain the second equation substitute

x = − log t so that dx = −1

t
dt.

Since
− log t

∣∣∣
t=1

= − log 1 = 0 and lim
t↘0

(
− log t

)
= ∞

the limits of integration transform as required and we obtain∫ ∞

0

f(x)dx =

∫ 0

1

f(− log t)
−1

t
dt =

∫ 1

0

f(− log t)

t
dt.

To obtain the third equation substitute

x = c+
t

1− t
so that dx =

(1− t)− t(−1)

(1− t)2
dt =

1

(1− t)2
dt.

Since (
c+

t

1− t

)∣∣∣
t=0

= c and lim
t↗1

(
c+

t

1− t

)∣∣∣
t=0

= c+∞ = ∞

3



Math/CS 467/667 Homework 1 Solutions Part 1

the limits of integration transform as required and the result follows.

These formulas can be used to integrate over intervals of infinite length because they
transform infinite intervals of integration on the left side to finite intervals on the right side.
Note, that the resulting integrals are still improper integrals and need to be interpreted as
limits. For example,∫ 1

−1

f
( t

1− t2

) 1 + t2

(1− t2)2
dt = lim

α↘−1
lim
β↗1

∫ β

α

f
( t

1− t2

) 1 + t2

(1− t2)2
dt.

What this means from a practical point of view, is that the left and right endpoints of
the transformed integral can’t appear in the quadrature formula used to approximate the
integral. Thus, it would be okay to use an open Newton–Cotes formula but not the closed
Newton–Cotes formula for the approximation. Similarly, the Gaussian quadrature formula
would be fine.

A drawback of using equally spaced t samples to perform the quadrature is that the
derivatives of the integrand becomes larger at the endpoints due to the singularity there.
Thus, the error bounds near the endpoints become large and more closely spaced samples in
t be necessary to achieve the required tolerance. This difficulty could be overcome by using
a recursive-adaptive method that further subdivides intervals based on error estimates.
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14.5 The methods in this chapter for differentiation were limited to functions f :R → R.
Suppose g:Rn → Rm. How would you use these techniques to approximate the
Jacobian Dg? How does the timing of your approach scale with m and n?

Upon writing g(x) =
(
g1(x), g2(x), . . . , gm(x)

)
and x = (x1, x2, . . . , xn) we may write the

Jacobian Dg as the matrix

Dg =


∂g1/∂x1 ∂g1/∂x2 · · · ∂g1/∂xn

∂g2/∂x1 ∂g2/∂x2 · · · ∂g2/∂xn

...
...

. . .
...

∂gm/∂x1 ∂gm/∂x2 · · · ∂gm/∂xn

 .

To approximate Dg it is sufficient to approximate each of the partial derivatives. This can
be done, for example, using the centered difference approximation

∂gi(x)

∂xj
≈ gi(x+ hej)− gi(x− hej)

2h

where ej denote the standard basis of Rn given by

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , e3 =


0
0
1
...
0

 , · · · , en =


0
0
0
...
1

 .

Note that any other method for approximating derivatives from the chapter could be
adapted in a similar way to approximate partial derivatives.

The timing of this approach is as follows. Since each Jacobian matrix has m × n entries,
then it takes O(mn) amount of computational effort to compute the entire matrix. The
same estimate is obtained no matter what method is used to approximate the individual
partial derivatives, provided the time needed to approximate each entry is is bounded by
a constant independent of m and n.
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14.10 Give examples of closed and open Newton-Cotes quadrature rules with negative co-
efficients for integrating f(x) on [0, 1]. What unnatural properties can be exhibited
by these approximations?

For the closed formula the Maple worksheet

restart;
kernelopts(printbytes=false):
n:=8;
h:=1/n;
approx:=sum(w[k]*f(k*h),k=0..n);
eq:=int(f(x),x=0..1)=approx;
eqf:=unapply(eq,f);
eqs:={seq(eqf(x->x^k),k=0..n)};
vbls:={seq(w[k],k=0..n)};
solve(eqs,vbls);

yields the output

|\^/| Maple 9.5 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> restart;
> kernelopts(printbytes=false):
> n:=8;

n := 8

> h:=1/n;
h := 1/8

> approx:=sum(w[k]*f(k*h),k=0..n);
approx := w[0] f(0) + w[1] f(1/8) + w[2] f(1/4) + w[3] f(3/8) + w[4] f(1/2)

+ w[5] f(5/8) + w[6] f(3/4) + w[7] f(7/8) + w[8] f(1)

> eq:=int(f(x),x=0..1)=approx;
1

/
|

eq := | f(x) dx = w[0] f(0) + w[1] f(1/8) + w[2] f(1/4) + w[3] f(3/8)
|

/
0
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+ w[4] f(1/2) + w[5] f(5/8) + w[6] f(3/4) + w[7] f(7/8) + w[8] f(1)

> eqf:=unapply(eq,f);
1

/
|

eqf := f -> | f(x) dx = w[0] f(0) + w[1] f(1/8) + w[2] f(1/4) + w[3] f(3/8)
|

/
0

+ w[4] f(1/2) + w[5] f(5/8) + w[6] f(3/4) + w[7] f(7/8) + w[8] f(1)

> eqs:={seq(eqf(x->x^k),k=0..n)};
eqs := {1 = w[0] + w[1] + w[2] + w[3] + w[4] + w[5] + w[6] + w[7] + w[8], 1/2

= 1/8 w[1] + 1/4 w[2] + 3/8 w[3] + 1/2 w[4] + 5/8 w[5] + 3/4 w[6]

+ 7/8 w[7] + w[8], 1/3 = 1/64 w[1] + 1/16 w[2] + 9/64 w[3] + 1/4 w[4]

25 49
+ -- w[5] + 9/16 w[6] + -- w[7] + w[8], 1/4 = 1/512 w[1] + 1/64 w[2]

64 64

27 125 27 343
+ --- w[3] + 1/8 w[4] + --- w[5] + -- w[6] + --- w[7] + w[8], 1/5 =

512 512 64 512

81 625 81
1/4096 w[1] + 1/256 w[2] + ---- w[3] + 1/16 w[4] + ---- w[5] + --- w[6]

4096 4096 256

2401 243
+ ---- w[7] + w[8], 1/6 = 1/32768 w[1] + 1/1024 w[2] + ----- w[3]

4096 32768

3125 243 16807
+ 1/32 w[4] + ----- w[5] + ---- w[6] + ----- w[7] + w[8], 1/7 =

32768 1024 32768

729 15625
1/262144 w[1] + 1/4096 w[2] + ------ w[3] + 1/64 w[4] + ------ w[5]

262144 262144
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729 117649
+ ---- w[6] + ------ w[7] + w[8], 1/8 = 1/2097152 w[1] + 1/16384 w[2]

4096 262144

2187 78125 2187 823543
+ ------- w[3] + 1/128 w[4] + ------- w[5] + ----- w[6] + ------- w[7]

2097152 2097152 16384 2097152

6561
+ w[8], 1/9 = 1/16777216 w[1] + 1/65536 w[2] + -------- w[3] + 1/256 w[4]

16777216

390625 6561 5764801
+ -------- w[5] + ----- w[6] + -------- w[7] + w[8]}

16777216 65536 16777216

> vbls:={seq(w[k],k=0..n)};
vbls := {w[0], w[1], w[2], w[3], w[4], w[5], w[6], w[7], w[8]}

> solve(eqs,vbls);
989 2944 -464 5248 -454

{w[8] = -----, w[7] = -----, w[6] = -----, w[5] = -----, w[4] = ----,
28350 14175 14175 14175 2835

5248 -464 989 2944
w[3] = -----, w[2] = -----, w[0] = -----, w[1] = -----}

14175 14175 28350 14175

> quit
bytes used=2126536, alloc=1769148, time=0.05

which shows that the 9-point closed Newton–Cotes formula has negative weights

w4 = w6 = − 464

14175
.

For the open formula the Maple worksheet

restart;
kernelopts(printbytes=false):
n:=6;
h:=1/(n+1);
approx:=sum(w[k]*f((k+1/2)*h),k=0..n);
eq:=int(f(x),x=0..1)=approx;
eqf:=unapply(eq,f);
eqs:={seq(eqf(x->x^k),k=0..n)};
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vbls:={seq(w[k],k=0..n)};
solve(eqs,vbls);

yields the output

|\^/| Maple 9.5 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2004
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> restart;
> kernelopts(printbytes=false):
> n:=6;

n := 6

> h:=1/(n+1);
h := 1/7

> approx:=sum(w[k]*f((k+1/2)*h),k=0..n);
approx := w[0] f(1/14) + w[1] f(3/14) + w[2] f(5/14) + w[3] f(1/2)

11 13
+ w[4] f(9/14) + w[5] f(--) + w[6] f(--)

14 14

> eq:=int(f(x),x=0..1)=approx;
1

/
|

eq := | f(x) dx = w[0] f(1/14) + w[1] f(3/14) + w[2] f(5/14) + w[3] f(1/2)
|

/
0

11 13
+ w[4] f(9/14) + w[5] f(--) + w[6] f(--)

14 14

> eqf:=unapply(eq,f);
1

/
|

eqf := f -> | f(x) dx = w[0] f(1/14) + w[1] f(3/14) + w[2] f(5/14)
|

/

9



Math/CS 467/667 Homework 1 Solutions Part 1

0

11 13
+ w[3] f(1/2) + w[4] f(9/14) + w[5] f(--) + w[6] f(--)

14 14

> eqs:={seq(eqf(x->x^k),k=0..n)};
eqs := {1 = w[0] + w[1] + w[2] + w[3] + w[4] + w[5] + w[6], 1/2 = 1/14 w[0]

11 13
+ 3/14 w[1] + 5/14 w[2] + 1/2 w[3] + 9/14 w[4] + -- w[5] + -- w[6], 1/3 =

14 14

25 81 121
1/196 w[0] + 9/196 w[1] + --- w[2] + 1/4 w[3] + --- w[4] + --- w[5]

196 196 196

169 27 125
+ --- w[6], 1/4 = 1/2744 w[0] + ---- w[1] + ---- w[2] + 1/8 w[3]

196 2744 2744

729 1331 2197 81
+ ---- w[4] + ---- w[5] + ---- w[6], 1/5 = 1/38416 w[0] + ----- w[1]

2744 2744 2744 38416

625 6561 14641 28561
+ ----- w[2] + 1/16 w[3] + ----- w[4] + ----- w[5] + ----- w[6], 1/6 =

38416 38416 38416 38416

243 3125 59049
1/537824 w[0] + ------ w[1] + ------ w[2] + 1/32 w[3] + ------ w[4]

537824 537824 537824

161051 371293 729
+ ------ w[5] + ------ w[6], 1/7 = 1/7529536 w[0] + ------- w[1]

537824 537824 7529536

15625 531441 1771561 4826809
+ ------- w[2] + 1/64 w[3] + ------- w[4] + ------- w[5] + ------- w[6]}

7529536 7529536 7529536 7529536

> vbls:={seq(w[k],k=0..n)};
vbls := {w[0], w[1], w[2], w[3], w[4], w[5], w[6]}
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> solve(eqs,vbls);
4949 49 6223 -6257 6223

{w[6] = -----, w[5] = ----, w[4] = -----, w[3] = -----, w[2] = -----,
27648 7680 15360 34560 15360

49 4949
w[1] = ----, w[0] = -----}

7680 27648

> quit
bytes used=1968360, alloc=1638100, time=0.05

which shows that the 7-point open Newton–Cotes formula has the negative weight

w3 = − 6257

34560
.

An unnatural property that quadrature approximations with negative weights can exhibit
is the possibility of approximating the integral of a non-negative function by a negative
number. For example, consider the non-negative function

f(x) =
{
1− |16x− 8| for |x− 1/2| < 1/16
0 otherwise

with graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

f(x)

f(xk)

For this function the exact integral is∫ 1

0

f(x)dx = 1/16

whereas the 7-point open Newton–Cotes approximation yields the negative number

6∑
k=0

wkf(xk) = w3 = − 6257

34560
.
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14.11 Provide a sequence of differentiable functions

fk: [0, 1] → R and a function f : [0, 1] → R

such that as k → ∞ the following limits hold:

max
x∈[0,1]

∣∣fk(x)− f(x)
∣∣ → 0 and max

x∈[0,1]

∣∣f ′
k(x)− f ′(x)

∣∣ → ∞.

What does this example imply about numerical differentiation when function values
are noisy? Is a similar counterexample possible for integration when f and the fks
are integrable?

Consider the functions

fk(x) = k−1 sin(k2x) and f(x) = 0.

Then | sin(x)| ≤ 1 implies∣∣fk(x)− f(x)
∣∣ = ∣∣k−1 sin(k2x)− 0

∣∣ ≤ 1/k → 0 as k → ∞.

Differentiating yields

f ′
k(x) = k cos(k2x) and f ′(x) = 0.

Consequently ∣∣f ′
k(0)− f ′(0)

∣∣ = ∣∣k cos(0)− 0
∣∣ = k → ∞ as k → ∞.

It follows that fk and f satisfy the desired limits.

In the case that the function values are noisy with noise level ϵ, one might take k > 1/ϵ
and imagine that fk represents a noisy approximation of f such that∣∣fk(x)− f(x)

∣∣ < ϵ for every x ∈ [0, 1].

If fk is used to obtain a numerical approximation of the derivative, then what we really
have is an approximation of the derivative f ′

k. However, since f ′
k and f ′ are quite different,

a good approximation of f ′
k would be a bad approximation of f ′.

There are no similar counterexamples possible for integration, because

max
x∈[0,1]

∣∣fk(x)− f(x)
∣∣ < ϵ

implies ∣∣∣ ∫ 1

0

fk(x)dx−
∫ 1

0

f(x)dx
∣∣∣ ≤ ∫ 1

0

∣∣fk(x)− f(x)
∣∣dx ≤

∫ 1

0

ϵ dx = ϵ.

Therefore, as ϵ → 0 the difference in the integrals of fk and f also tends to zero.
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