Adaptive Gauss Quadrature

Your work should be presented in the form of a typed report using clear and properly punctuated English. Where appropriate include full program listing and output. If you choose to work in a group of two, please turn in independently prepared reports.

1. Find an orthogonal polynomial p_{4} of degree 4 such that

$$
\int_{-1}^{1} q(x) p_{4}(x)=0
$$

for every polynomial $q(x)$ of degree 3 or less. You may use Maple and the GramSchmidt process as done in class. Alternatively, use your differential equation skills to find a polynomial solution to the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+20 y=0
$$

2. The roots of $p_{4}(x)$ are real and lie in the interval $[-1,1]$. Use Newton's method with suitable starting points to find all four roots x_{0}, x_{1}, x_{2} and x_{3} as accurately as possible. Compute the residuals and the derivatives

$$
p_{4}\left(x_{j}\right) \quad \text { and } \quad p_{4}^{\prime}\left(x_{j}\right) \quad \text { for } \quad j=1,2,3,4
$$

and comment on the accuracy of your roots.
3. Find weights w_{k} for $k=0,1,2,3$ such that

$$
\int_{-1}^{1} x^{j} d x=\sum_{k=0}^{3} w_{k} x_{k}^{j} \quad \text { for } \quad j=0,1,2,3
$$

Verify that

$$
\int_{-1}^{1} x^{j} d x=\sum_{k=0}^{3} w_{k} x_{k}^{j} \quad \text { for } \quad j=4,5,6,7 .
$$

4. Prove the equality

$$
\int_{a}^{b} f(t) d t=\frac{b-a}{2} \int_{-1}^{1} f\left(a+\frac{b-a}{2}(x+1)\right) d x
$$

5. Define

$$
G_{4}(a, b, f)=\frac{b-a}{2} \sum_{k=0}^{3} w_{k} f\left(a+\frac{b-a}{2}\left(x_{k}+1\right)\right)
$$

We know from the verification in question 3 as well as the general theory of Gauss quadrature that

$$
\left|\int_{a}^{b} f(t) d t-G_{4}(a, b, f)\right|=\mathcal{O}\left((b-a)^{9}\right) \quad \text { as } \quad b-a \rightarrow 0
$$

Let $c=(a+b) / 2$ and use Richardson extrapolation to find α and β such that

$$
R(a, b, f)=\alpha G_{4}(a, b, f)+\beta\left(G_{4}(a, c, f)+G_{4}(c, b, f)\right)
$$

satisfies

$$
\left|\int_{a}^{b} f(t) d t-R(a, b, f)\right|=\mathcal{O}\left((b-a)^{10}\right) \quad \text { as } \quad b-a \rightarrow 0
$$

6. Consider the adaptive quadrature rule given by

$$
Q(a, b, f, \varepsilon)= \begin{cases}R(a, b, f) & \text { if }\left|G_{4}(a, b, f)-R(a, b, f)\right|<\varepsilon \\ Q(a, c, f, \varepsilon / 2) & \\ +Q(c, b, f, \varepsilon / 2) & \text { otherwise }\end{cases}
$$

and use this rule to approximate the improper integral

$$
\int_{0}^{1} f(t) d t \quad \text { where } \quad f(t)=\frac{1}{t} e^{-(\log t)^{2}}
$$

Since the exact value of the integral is $\sqrt{\pi} / 2$ check that your approximation satisfies

$$
\text { error }=\left|Q(0,1, f, \varepsilon)-\frac{\sqrt{\pi}}{2}\right| \leq \varepsilon \quad \text { when } \quad \varepsilon=10^{-7}
$$

What happens to the above approximation when $\varepsilon=10^{-p}$ for $p=8,9,10, \ldots 15$?
7. [Extra Credit and for Math/CS 667] Write an optimized code implementing the adaptive quadrature method described in the previous question so that for each distinct interval $\left[a_{i}, b_{i}\right]$ the corresponding value of $G_{4}\left(a_{i}, b_{i}, f\right)$ is computed only once as the routine recurses.

