1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be an $n+1$ times continuously differentiable function. Prove Taylor's theorem with integral from of the remainder, or in other words, that

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\cdots+\frac{h^{n}}{n!} f^{(n)}(x)+R_{n}
$$

where

$$
R_{n}=\int_{x}^{x+h} \frac{(x+h-s)^{n}}{n!} f^{(n+1)}(s) d s
$$

2. Let p_{i} for $i=0, \ldots, n$ be a family of orthogonal polynomials such that

$$
p_{i} \text { has degree } i \quad \text { and } \quad \int_{-1}^{1} p_{i}(x) p_{j}(x) d x= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Consider the Gaussian quadrature method given by

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx \sum_{k=0}^{n-1} w_{k} f\left(x_{k}\right) \tag{1}
\end{equation*}
$$

where x_{k} are the n distinct roots such that $p_{n}\left(x_{k}\right)=0$ for $k=0, \ldots, n-1$ and the weights w_{k} have been chosen such that

$$
\int_{-1}^{1} x^{j} d x=\sum_{k=0}^{n-1} w_{k} x_{k}^{j} \quad \text { for } \quad j=0, \ldots, n-1
$$

Prove the approximation (1) is exact when f is any polynomial of degree $2 n-1$.

Math/CS 467/667 Quiz 1 Version A

3. Answer one of the following two questions:
(i) Show the trapezoid rule

$$
\int_{a}^{b} f(x) d x \approx \frac{f(a)+f(b)}{2}(b-a)
$$

is exact for $f(x)=m x+c$ along any interval $x \in[a, b]$.
(ii) State the weighted mean-value theorem for integrals and then use this theorem to show that R_{n} as defined in question 1 satisfies

$$
R_{n}=\frac{h^{n+1}}{(n+1)!} f^{(n+1)}(c) \quad \text { for some } c \text { between } x \text { and } x+h
$$

You may assume $h>0$ for convenience.

Math/CS 467/667 Quiz 1 Version A

4. Answer one of the following two questions:
(i) Derive α, β and x_{0} such that the quadrature rule

$$
\int_{0}^{3} f(x) d x \approx \alpha f\left(x_{0}\right)+\beta f(2)
$$

holds exactly for polynomials of degree less than or equal 2 .
(ii) Suppose f and g are integrable and that $|f(x)-g(x)|<\epsilon$ for $x \in[a, b]$. Prove

$$
\left|\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x\right| \leq \epsilon(b-a) .
$$

Math/CS 467/667 Quiz 1 Version A
5. [Extra Credit] Provide a sequence of twice-differentiable functions

$$
f_{k}:[0,1] \rightarrow \mathbf{R} \quad \text { and a twice-differentiable function } \quad f:[0,1] \rightarrow \mathbf{R}
$$

such that as $k \rightarrow \infty$ the following limits hold:

$$
\max _{x \in[0,1]}\left|f_{k}(x)-f(x)\right| \rightarrow 0, \quad \max _{x \in[0,1]}\left|f_{k}^{\prime}(x)-f^{\prime}(x)\right| \rightarrow 1
$$

and $\max _{x \in[0,1]}\left|f_{k}^{\prime \prime}(x)-f^{\prime \prime}(x)\right| \rightarrow \infty$.

