Math/CS 467/667 Sample Quiz 2 Version A

1. Answer one of the following two questions:
(i) Consider the trapezoid formula

$$
T(\alpha, \beta, f)=\frac{f(\alpha)+f(\beta)}{2}(\beta-\alpha)
$$

and the resulting quadrature method given by

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=0}^{N-1} T\left(x_{j}, x_{j+1}, f\right)
$$

where $N \in \mathbf{N}$ and $x_{j}=a+h j$ with $h=(b-a) / N$. Write a program to approximate the integral

$$
\int_{0}^{10} \frac{1}{2+\sin x} d x
$$

for $N=10$ that prints the resulting approximation with 15 digits precision. Include the program and the output of the program in your submission.
(ii) Consider the differential equation given by

$$
y^{\prime}=\frac{y}{t}-\left(\frac{y}{t}\right)^{2}, \quad y(1)=1
$$

Approximate the solution to this differential equation on the interval $[1,2]$ using the RK4 method with $h=1 / 20$. Print the approximation of $y(2)$ and the error $|y(2)-2 /(1+\log 2)|$ to 15 digits precision. Include the program and the output of the program in your submission.

Math/CS 467/667 Sample Quiz 2 Version A
2. Answer one of the following two questions:
(i) Consider the 3-point Gaussian formula given by

$$
G_{3}(\alpha, \beta, f)=\frac{\beta-\alpha}{2} \sum_{k=0}^{2} w_{k} f\left(\alpha+\frac{\beta-\alpha}{2}\left(x_{k}+1\right)\right)
$$

where

$$
\begin{array}{ccc}
x_{0}=-\sqrt{3 / 5}, & x_{1}=0, & x_{2}=\sqrt{3 / 5}, \\
w_{0}=5 / 9, & w_{1}=8 / 9, & w_{2}=5 / 9
\end{array}
$$

and the resulting quadrature method given by

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=0}^{N-1} G_{3}\left(x_{j}, x_{j+1}, f\right)
$$

where $N \in \mathbf{N}$ and $x_{j}=a+h j$ with $h=(b-a) / N$. Write a program to approximate the integral

$$
\int_{0}^{5} \exp (\sin x) d x
$$

for $N=10$ that prints the resulting approximation with 15 digits precision. Include the program and the output of the program in your submission.
(ii) Consider the differential equation given by

$$
y^{\prime}=\frac{1}{t^{2}}-\frac{y}{t}-y^{2}, \quad y(1)=-1
$$

Approximate the solution to this differential equation on the interval $[1,2]$ using Taylor's 3 rd order method with $h=1 / 30$. Print the approximation of $y(2)$ and the error $|y(2)+1 / 2|$ to 15 digits precision. Include the program and the output of the program in your submission.

