
Math/CS 467/667: Lecture 3

Given a quadrature rule

quad(f) =
n−1∑
k=0

wkf(xk) such that

∫ 1

−1

f(x)dx ≈ quad(f) (1)

is exact when f is a polynomial of degree less than or equal N , consider the approximation∫ b

a

f(x)dx ≈ comp(f, a, b,m) where comp(f, a, b,m) =
m−1∑
i=0

quad(gi)

is the composite quadrature formula on [a, b] over m subintervals given by

gj(x) =
h

2
f
(xh

2
+ a+ hj +

h

2

)
and h =

b− a

m
.

Before beginning our analysis of the composite quadrature formula comp(f, a, b,m),
we first prove a lemma that results from the monotonicity of quad(f) when the weights
wk are positive but also holds, in general, when they have mixed signs. Note that there
are examples of naturally occurring Newton–Cotes quadrature formulas for which some
of the weights wk turn out to be negative. In the case when quad is given by Gaussian
quadrature we have N = 2n− 1 and the weights are positive.

Lemma 2. There is a constant c ≥ 2 depending only on n and the wk’s such that

|f | ≤ M implies |quad(f)| ≤ cM

Proof. By the triangle inequality

|quad(f)| ≤
n−1∑
k=0

|wk|
∣∣f(xk)

∣∣ ≤ cM where c =
n−1∑
k=0

|wk|.

In the case the wk ≥ 0 for all k we further have that

c =
n−1∑
k=0

|wk| =
n−1∑
k=0

wk = quad(1) =

∫ 1

−1

1 · dx = 2.

Therefore, take c = 2 when all the weights are non-negative and note that c > 2 when
some of the weights are negative. This finishes the proof of the lemma. ////

Note under the assumption the weights wk are non-negative the approximation quad
is, in fact, monotone as can be seen as follows: Suppose f(x) ≤ g(x) for all x, then

quad(f) =
n−1∑
k=0

wkf(xk) ≤
n−1∑
k=0

wkg(xk) = quad(f).
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This, in particular, implies |quad(f)| ≤ quad(|f |), which means the approximation of the
area under the absolute value of a function is always larger than the absolute value of the
approximation of its integral.

We characterize now the error in the composite quadrature formula by proving

Theorem 3. If f has N + 1 continuous derivatives on the interval [a, b] then the error

Em =
∣∣∣ ∫ b

a

f(x)dx− comp(f, a, b,m)
∣∣∣ = O(hN+1) as h → 0.

Proof. Let tj = a+ hj and note that∫ b

a

f(x)dx =
m−1∑
j=0

∫ tj+1

tj

f(t)dt.

For each of the integrals over the intervals [tj , tj+1] of length h appearing on the right hand
side make the change of variables

t =
−tj(x− 1)

2
+

tj+1(x+ 1)

2
=

xh

2
+ a+ hj +

h

2
and dt =

h

2
dx

to obtain ∫ tj+1

tj

f(t)dt =
h

2

∫ 1

−1

f
(xh

2
+ a+ hj +

h

2

)
dx =

∫ 1

−1

gj(x)dx.

We now use the fact that quad is exact for polynomials of degree less or equal N to
obtain bounds on the error. By the triangle inequality

Em ≤
m−1∑
j=0

∣∣∣ ∫ 1

−1

gj(x)dx− quad(gj)
∣∣∣. (4)

Since f has N + 1 continuous derivatives and the maximum of the continuous function
f (N+1)(x) is guaranteed to exist on the closed interval [a, b], then we may define

M = max
{
|fN+1(x)| : x ∈ [a, b]

}
.

Upon noting that gj also has N+1 continuous derivatives, it follows from Taylor’s theorem
that gj(x) = Tj(x)+Rj(x) where Tj is the Taylor polynomial of degree N expanded about
x = 0 and Rj is the remainder given by

Rj(x) =
xN+1

(N + 1)!
g
(N+1)
j (ξj) for some ξj between 0 and x.

Since x ∈ [−1, 1] then ξj ∈ [−1, 1]. By the chain rule we obtain

|g(N+1)
j (ξj)| =

h

2

∣∣∣( d

dx

)N+1

f
(xh

2
+ a+ hj +

h

2

)∣∣∣
x=ξj

=
(h
2

)N+2∣∣∣f (N+1)
(ξjh

2
+ a+ hj +

h

2

)∣∣∣
≤

(h
2

)N+2

max
{
|f (N+1)(t) : t ∈ [tj , tj+1]

}
≤

(h
2

)N+2

M.
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Consequently,

|Rj(x)| ≤
|x|N+1

(N + 1)!

(h
2

)N+2

M ≤ hN+2B where B =
1

(N + 1)!
· M

2N+2
.

Plugging the Taylor polynomial and remainder into (4) and using the fact that quad
is exact for polynomials of degree less than or equal N we obtain

Em ≤
m−1∑
j=0

∣∣∣ ∫ 1

−1

Rj(x)dx
∣∣∣+ m−1∑

j=0

∣∣quad(Rj)
∣∣.

At this point we use the monotonicity of the integral—the fact that the area under the
absolute value of a curve is greater than the original area—to estimate∣∣∣ ∫ 1

−1

Rj(x)dx
∣∣∣ ≤ ∫ 1

−1

∣∣Rj(x)
∣∣dx ≤

∫ 1

−1

hN+2B = 2hN+2B.

Combining the above estimate with the Lemma 2 applied to |quad(Rj)| yields

Em ≤
m−1∑
i=0

(2 + c)hN+2B = (2 + c)mhN+2B

= (2 + c)B(b− a)hN+1 = O(hN+1) as h → 0.

This finishes the proof of the theorem. ////

We remark in the case of Gaussian quadrature where N = 2n− 1 that the results of
Theorem 3 may be simplified to obtain

Em ≤ 4B(b− a)
(b− a

m

)2n

.

In applications one typically chooses n fixed and then increases m until the desired error
goals are met. It is, of course, possible to increase n as well. However, in doing so, one
must remember that B also depends on n through M .

If f is an analytic function such that its Taylor series converges on a closed disk in
the complex plane of radius r at every point x ∈ [a, b], this means for complex ω that

max
{ r2n

(2n)!
|f (2n)(ω)| : |ω − x| ≤ r

}
≤ max

{
|f(ω)| : |ω − x| = r

}
for all n ≥ 0. It follows that (2+ c)B(2r)2n(b− a) is bounded, say by A, and consequently
it holds for every h < 2r that

Em ≤ A
( h

2r

)2n

→ 0 exponentially as n → ∞.

Thus, provided h is small enough, it is also possible—though less common—to meet any
error bounds with exponential efficiency by taking n sufficiently large.
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