Math/CS 467/667: Lecture 3

Given a quadrature rule

$$\operatorname{quad}(f) = \sum_{k=0}^{n-1} w_k f(x_k) \qquad \text{such that} \qquad \int_{-1}^1 f(x) dx \approx \operatorname{quad}(f) \tag{1}$$

is exact when f is a polynomial of degree less than or equal N, consider the approximation

$$\int_a^b f(x)dx \approx \operatorname{comp}(f,a,b,m) \qquad \text{where} \qquad \operatorname{comp}(f,a,b,m) = \sum_{i=0}^{m-1} \operatorname{quad}(g_i)$$

is the composite quadrature formula on [a, b] over m subintervals given by

$$g_j(x) = \frac{h}{2}f\left(\frac{xh}{2} + a + hj + \frac{h}{2}\right)$$
 and $h = \frac{b-a}{m}$.

Before beginning our analysis of the composite quadrature formula comp(f, a, b, m), we first prove a lemma that results from the monotonicity of quad(f) when the weights w_k are positive but also holds, in general, when they have mixed signs. Note that there are examples of naturally occurring Newton-Cotes quadrature formulas for which some of the weights w_k turn out to be negative. In the case when quad is given by Gaussian quadrature we have N = 2n - 1 and the weights are positive.

Lemma 2. There is a constant $c \geq 2$ depending only on n and the w_k 's such that

$$|f| \leq M \qquad implies \qquad |\mathsf{quad}(f)| \leq cM$$

Proof. By the triangle inequality

$$|\operatorname{quad}(f)| \leq \sum_{k=0}^{n-1} |w_k| |f(x_k)| \leq cM \quad \text{where} \quad c = \sum_{k=0}^{n-1} |w_k|.$$

In the case the $w_k \geq 0$ for all k we further have that

$$c = \sum_{k=0}^{n-1} |w_k| = \sum_{k=0}^{n-1} w_k = \operatorname{quad}(1) = \int_{-1}^1 1 \cdot dx = 2.$$

Therefore, take c=2 when all the weights are non-negative and note that c>2 when some of the weights are negative. This finishes the proof of the lemma.

Note under the assumption the weights w_k are non-negative the approximation quad is, in fact, monotone as can be seen as follows: Suppose $f(x) \leq g(x)$ for all x, then

$$\operatorname{quad}(f) = \sum_{k=0}^{n-1} w_k f(x_k) \leq \sum_{k=0}^{n-1} w_k g(x_k) = \operatorname{quad}(f).$$

This, in particular, implies $|quad(f)| \le quad(|f|)$, which means the approximation of the area under the absolute value of a function is always larger than the absolute value of the approximation of its integral.

We characterize now the error in the composite quadrature formula by proving

Theorem 3. If f has N+1 continuous derivatives on the interval [a,b] then the error

$$E_m = \Big| \int_a^b f(x) dx - \mathsf{comp}(f, a, b, m) \Big| = \mathcal{O}(h^{N+1}) \qquad as \qquad h \to 0.$$

Proof. Let $t_j = a + hj$ and note that

$$\int_{a}^{b} f(x)dx = \sum_{j=0}^{m-1} \int_{t_{j}}^{t_{j+1}} f(t)dt.$$

For each of the integrals over the intervals $[t_j, t_{j+1}]$ of length h appearing on the right hand side make the change of variables

$$t = \frac{-t_j(x-1)}{2} + \frac{t_{j+1}(x+1)}{2} = \frac{xh}{2} + a + hj + \frac{h}{2}$$
 and $dt = \frac{h}{2}dx$

to obtain

$$\int_{t_j}^{t_{j+1}} f(t)dt = \frac{h}{2} \int_{-1}^{1} f\left(\frac{xh}{2} + a + hj + \frac{h}{2}\right) dx = \int_{-1}^{1} g_j(x) dx.$$

We now use the fact that quad is exact for polynomials of degree less or equal N to obtain bounds on the error. By the triangle inequality

$$E_m \le \sum_{j=0}^{m-1} \left| \int_{-1}^1 g_j(x) dx - \mathsf{quad}(g_j) \right|. \tag{4}$$

Since f has N+1 continuous derivatives and the maximum of the continuous function $f^{(N+1)}(x)$ is guaranteed to exist on the closed interval [a,b], then we may define

$$M = \max \{ |f^{N+1}(x)| : x \in [a, b] \}.$$

Upon noting that g_j also has N+1 continuous derivatives, it follows from Taylor's theorem that $g_j(x) = T_j(x) + R_j(x)$ where T_j is the Taylor polynomial of degree N expanded about x = 0 and R_j is the remainder given by

$$R_j(x) = \frac{x^{N+1}}{(N+1)!} g_j^{(N+1)}(\xi_j)$$
 for some ξ_j between 0 and x .

Since $x \in [-1, 1]$ then $\xi_j \in [-1, 1]$. By the chain rule we obtain

$$|g_{j}^{(N+1)}(\xi_{j})| = \frac{h}{2} \left| \left(\frac{d}{dx} \right)^{N+1} f\left(\frac{xh}{2} + a + hj + \frac{h}{2} \right) \right|_{x=\xi_{j}}$$

$$= \left(\frac{h}{2} \right)^{N+2} \left| f^{(N+1)} \left(\frac{\xi_{j}h}{2} + a + hj + \frac{h}{2} \right) \right|$$

$$\leq \left(\frac{h}{2} \right)^{N+2} \max \left\{ \left| f^{(N+1)}(t) : t \in [t_{j}, t_{j+1}] \right. \right\} \leq \left(\frac{h}{2} \right)^{N+2} M.$$

Consequently,

$$|R_j(x)| \le \frac{|x|^{N+1}}{(N+1)!} \left(\frac{h}{2}\right)^{N+2} M \le h^{N+2} B$$
 where $B = \frac{1}{(N+1)!} \cdot \frac{M}{2^{N+2}}$.

Plugging the Taylor polynomial and remainder into (4) and using the fact that quad is exact for polynomials of degree less than or equal N we obtain

$$E_m \leq \sum_{j=0}^{m-1} \Big| \int_{-1}^1 R_j(x) dx \Big| + \sum_{j=0}^{m-1} \left| \operatorname{quad} \left(R_j \right) \right|.$$

At this point we use the monotonicity of the integral—the fact that the area under the absolute value of a curve is greater than the original area—to estimate

$$\left| \int_{-1}^{1} R_j(x) dx \right| \le \int_{-1}^{1} \left| R_j(x) \right| dx \le \int_{-1}^{1} h^{N+2} B = 2h^{N+2} B.$$

Combining the above estimate with the Lemma 2 applied to $|quad(R_i)|$ yields

$$E_m \le \sum_{i=0}^{m-1} (2+c)h^{N+2}B = (2+c)mh^{N+2}B$$
$$= (2+c)B(b-a)h^{N+1} = \mathcal{O}(h^{N+1}) \quad \text{as} \quad h \to 0.$$

This finishes the proof of the theorem.

We remark in the case of Gaussian quadrature where N=2n-1 that the results of Theorem 3 may be simplified to obtain

////

$$E_m \le 4B(b-a)\left(\frac{b-a}{m}\right)^{2n}.$$

In applications one typically chooses n fixed and then increases m until the desired error goals are met. It is, of course, possible to increase n as well. However, in doing so, one must remember that B also depends on n through M.

If f is an analytic function such that its Taylor series converges on a closed disk in the complex plane of radius r at every point $x \in [a, b]$, this means for complex ω that

$$\max\left\{\frac{r^{2n}}{(2n)!}|f^{(2n)}(\omega)|:|\omega-x|\leq r\right\}\leq \max\left\{|f(\omega)|:|\omega-x|=r\right\}$$

for all $n \ge 0$. It follows that $(2+c)B(2r)^{2n}(b-a)$ is bounded, say by A, and consequently it holds for every h < 2r that

$$E_m \le A \left(\frac{h}{2r}\right)^{2n} \to 0$$
 exponentially as $n \to \infty$.

Thus, provided h is small enough, it is also possible—though less common—to meet any error bounds with exponential efficiency by taking n sufficiently large.