Homework 1 on the Fourier Transform Answer Key

1. The divide-and-conquer step described in the lecture notes splits the terms of the
sum for the discrete Fourier transform into odd and even terms. Construct a similar
equation for use when N = 3™ that divides the sum into three parts such that & (the
index in the original sum) divided by 3 has remainder 0, 1 or 2.

Suppose 3K = N then a similar equation that divides the discrete Fourier transform into
three parts is

szlei%-kl/Nwl _ < Z i Z n Z >67i27rkl/le
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Note that the last three sums are exactly Fourier transforms of size N/3 = K for the
vectors with components x3,, 3,+1 and 3,12 respectively.

2. Let z = a4+ bi and w = u + iv be complex numbers. It takes four real-valued
multiplications when using the foil method to find the product zw. Look up fast
complex multiplication, describe it and explain how many real-valued multiplications
the fast algorithm uses to find zw.

For reference, note that by the foil method we have
2w = (a+ bi)(u+ ) = au — bv + i(av + bu).
Now, set M =a+ b and N = u + v and form the three products
m = au, N =MN and ns = bv.
Since
N2 = (a +b)(u+v) = au+ av + bu + bv = n; + av + bu + 13,

it follows that
2w = — 3 +i(n2 —m —n3).

Therefore, fact complex multiplication finds the product zw using only three multiplica-
tions. It should be noted, however, that the number of additions and subtractions have
increased from two to five.

Suppose « is the effort to perform either addition or subtraction and 3 is the compu-
tational effort to multiply two real floating-point numbers. For fast complex multiplication
to be faster than the foil method we must have

Sa+ 38 <2a+4p3 or equivalently 3a < 6.
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Therefore, if on any particular CPU architecture it happens that floating point multiplica-
tion is less than three times as long as an addition and subtraction, then the foil method
would actually be faster.

3. Compute the number of real-valued double-precision floating-point multiplications
and additions needed to perform a fast Fourier transform of length N = 3™ using
the divide-and-conquer step developed in your answer to Question 1. Explain your
reasoning and how you counted the total number of operations. How many evaluations
of the exponential function are performed?

As the only reasonable way to add or subtract complex numbers takes two real additions or
subtractions we count all complex additions and subtractions as two of the corresponding
real operations. In the case of the divide an conquer algorithm, two complex additions
are needed to add the three terms together. As these additional need to be performed for
[=0,...,N — 1 that amounts to 2N complex additions, or 4N real additions.

We next count the number of exponentials. Each of the exponentials

p—i2ml/N p—i4nl/n for [=0,...,N -1

and
are needed to combine the three transforms of length K. This appears to require the eval-
uation of 2N exponential functions; however, there one can use the algebraic properties of
the exponential to reduce that count at the expense of additional complex multiplications.
In particular, it would be possible to repeatedly multiply e~*™/N by itself the required
number of times to obtain any of the desired exponentials. We do not go to this extreme,
because such a procedure would result in an unacceptable increase in rounding error.
Instead, note that the identity

e—47rl/N — (6—27rl/N)2
allows us to replace half of these exponential evaluations by squares. Moreover, by nesting
the multiplication in the last two terms of the divide and conquer method as

K- K-1
227TZ/N< e—zprl/K 3p+1 +e—z27rl/N 2 :G_Zzﬂpl/Kﬂfgp_;_g),

p=0 p=0

;_A

see also the Julia code in question 6, one doesn’t actually need to compute the squares
ahead of time. They can be done free. Now, since

e—zQﬂ(H—K)/N _ 6—127rl/N€—127r/3 8—1271'(l—|—2K)/N _ _6—127rl/N8—17r/3’

and
then two out of every three of the remaining exponential functions can also be replaced by
another complex multiplication. This leaves K exponential functions to evaluate at each
step plus 2K complex multiplications.

Before continuing our analysis of the exponential note the relation

e~ i™/3 — p—i2m/3



implies there could be additional savings of the underlying real operations needed for some
of the complex multiplications described above. For simplicity these are not considered
here. To finish our analysis of the exponential, note that a real multiplication is performed
inside each exponential to multiply 27 /N by [ where 27 /N needs to be formed only once.
This yields K real multiplications and 1 division.

The only thing left are the 2N complex multiplications needed to multiply the expo-
nentials by the results of the length K transforms before adding.

Let « denote real addition and subtraction, 8 denote real multiplication, v denote
the exponential of an imaginary argument, § division of a real number and p complex
multiplication. Using this notation we may express the total number of operations of each
type sufficient to perform a discrete Fourier transform of length N as

Tn = coa+ 18+ coy 4 ¢30 + cqpu for some c; € N.
The conquer and divide analysis performed above then implies

Tyn < 3T5n-1+4-3"a+3""1y42.3" 43" 1846 +2-3"
< 3T + 3" 12+ B+ + 11p) + 6.

By induction it follows that

Tsn < 3(3T3n—2 + 3" %(12a+ B+ +8u) +6) + 3" (12a+ B+~ +8u) +6
= 3302 +2-3""1(12a + B+ v+ 8u) + (3+1)6
<345 +3-3"" 120+ B+ v+ 8u) + (32 +3+1)8
<3"T30 +n-3"" 120+ B+ +8u) + (3" 1+ + 32+ 3+ 1)0.

Since the transform of length 1 is the identity operation, then T30 = 0. Further summing
the geometric series in front of § yields

3" 4 43243 +1=(3"-1)/2.
Therefore, recalling that N = 3" and logs N = n, we obtain

< N logs N

Tn 3

N -1
(12a+6+’y+8u)+75.
At this point one can choose whether the complex multiplications are computed using
the foil method or by the fast multiplication described in question 2. For the former we
have u = 2a. 4+ 43, which then implies

Nlogs N N -1
Ty < O%"*‘r?’(%a 336 +7) + —5 0.
For the latter we have u = 5a + 33, which alternatively implies

Nlogy N N-1
Ty < ——83°% (520 + 168 +7) + ———6.
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Given the floating point hardware present in modern processors, the speed difference
for the double-precision arithmetic used in most scientific computation between multipli-
cation and addition not great enough such that the fast algorithm provides any advantage.
We therefore conclude a reasonable upper bound on the number of operations needed to
perform a fast Fourier transform of length N = 3" may be summarized as

Operation Number
Real Additions and Subtractions 28N (logs N)/3
Real Multiplications 11N (logs N)
Exponential Evaluations N(logs N)/3
Real Divisions (N —-1)/2

On the other hand, if Fourier transforms computed using multi-precision arithmetic con-
sisting of thousands of digits were needed, then the bound and corresponding algorithm
given by fast multiplication could result in significant computational savings.

4. Install the FFTW library https://github.com/JuliaMath/FFTW.jl in Julia and verify
that it produces the same answers as the myfft routine we wrote in class. Test both
routines for vectors of length N = 2™ for at least 5 different vectors.

The program I wrote computes the Fourier transform for randomly generated vectors of
size N =2" forn=7,...,11 using myfft and the fft routine from FFTW. The norm of
the difference of the two results is computed to make sure the results are consistent. The
program was

1 function myfft(x)

2 N=length(x)

3 if N ==

4 return x

5 end

6 if N % 2 ==

7 println("N = ",N," was not even!")
8 throw(ArgumentError)

9 end

10 ye=myfft(x[1l:2:N-1])

11 yo=myfft(x[2:2:N])

12 M=N=<+2

13 y = Array{Complex} (undef,N)

14 for 1. = 1:M

15 z0 = ye[l]

16 z1 = exp(-1im*2*pi*(1-1)/N)*yo[1]
17 y[l] = z0 + z1

18 y[l+M] = z0 - z1

19 end

20 return y

21 end
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using FFTW,LinearAlgebra,Printf

@printf("#%7s %22s\n","N"," |myfft-fft|")
for n=7:11

N=2"n

x=rand(N)

myxhat=myfft(x)

xhat=fft(x)

e=norm(myxhat-xhat)

@printf("%8d %22.14e\n",N,e)
end

and the output

# N Imyfft-fft|
128  9.95835474053927e-15

256  2.81419638000483¢- 14

512 6.02166536198006e- 14

1024  1.31078003116496e-13
2048  2.75922888706280e-13

which implies to within rounding error that the two routines produce the same results.
5. Modify the program fft2.jl so that it compares the speed of FF'TW to the myfft
routine. How much faster is FF'TW compared to myfft? Does the difference in speed

become more or less noticeable as the vector length N increases? If known, please
provide details about the computer used, for example what model CPU it has.

A program was created to compare the relative speed of myfft with fft using Fourier
transforms of sizes N = 2" where n = 5,...,18. The Julia code is

function myfft(x)

N=1length(x)

ifN==1
return x

end

ifN%s2==1
println("N = ",N," was not even!")
throw(ArgumentError)

end

ye=myfft(x[1:2:N-1])
yo=myfft(x[2:2:N])

M=N=+2
y = Array{Complex} (undef,N)
for 1 = 1:M

z0 = ye[l]
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z1l = exp(-1im*2*pi*(1-1)/N)*yo[1]
= z0 + z1

y[l]
yll+
end
return y
end

M] =

z0 - z1

using FFTW,LinearAlgebra,Printf

@printf ("#%11ls %22s %22s %10s\n","N","T(myfft)","T(fft)", "speedup")

for n=5:18
N=2"n

myelap=0; elap=0

for j=1:

x=rand (N)
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start=time(); myxhat=myfft(x); dt=time()-start
if dt<myelap || myelap==
myelap=dt

end

start=time(); xhat=fft(x); dt=time()-start
if dt<elap || elap==0

end

elap=

dt

if norm(myxhat-xhat) > le-7
println("Difference too large!")
throw(ArgumentError)

end
end

@printf("%12d %22.14e %22.14e %10.4f\n",
N,myelap,elap,myelap/elap)

end
with output

# N
32

64
128
256
512
1024
2048
4096
8192
16384

Uu NP AN O BRNOD

T(myfft)

.00543212890625e-05
.58442687988281e-05
.00033187866211e-04
.35829162597656e-04
.72986221313477e-04
.05707550048828e-03
.58717346191406e-03
.00038051605225e-02
.16269493103027e-02
.11789321899414e-02

N B AP RPRPOO B W WDNRE

T(fft)

.90734863281250e-05
.88486480712891e-05
.48091125488281e-05
.71932983398438e-05
.79221343994141e-05
.69956207275391e-05
.04904174804688e-04
.80959701538086e-04
.06980514526367e-04
.43865966796875e-04

speedup

2.

3.

5.
11.
20.
30.
43.
55.
53.
68.

1000
3223
7466
7179
3035
7046
7273
2819
1400
8013
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32768 1.12089157104492e-01
65536 2.63868093490601e-01
131072 6.67751073837280e-01
262144  1.56996893882751e+00

Here the times T(myfft) and T(fft) were measured in seconds. The FFTW routine fft
varies from 2.1 to 86.0631 times faster than the routine myfft that we wrote in class. As
the size of the transform increases the difference in speed becomes more noticeable, except
for the last transform of size 252144 where the relative difference in speed between the two
methods decreases to the factor 26.7493. For reference the computer used was an ACER
C720 Chromebook with a 1.4GHz Intel Celeron 2955U processor.

6. [Extra Credit] Modify the code we wrote in class to perform fast Fourier transforms of
length N = 2P39 where p and g are both non-negative integers. Do this by selecting the
appropriate divide and conquer formula when dividing by the corresponding prime.
Comparing the output of your routine with FFTW. Does it make any difference with
regards to speed or rounding error if the powers of 3 or 2 are divided out first?

The program

function myfft(x)
N=Tlength(x)

if N==1
return x
end
y = Array{Complex} (undef,N)
if N% 2 ==
ye=myfft(x[1:2:N-1])
yo=myfft(x[2:2:N])
M=N=+2
for 1 = 1:M
z0 = ye[l]

1.52897834777832e-03
3.16214561462402e-03
7.75885581970215e-03
5.86919784545898e-02

z1 = exp(-1im*2*pi*(1-1)/N)*yo[1]

y[l] = z0 + z1
y[l+M] = z0 - z1
end
elseif N % 3 == 0
ymO=myfft(x[1:3:N-2])
yml=myfft(x[2:3:N-1])
ym2=myfft(x[3:3:N])

M=N=<+3
for 1 = 1:M
ela = exp(-2im*pi*(1-1)/N)

elb
z0 = ymO[1l]; z1 = yml[1];
y[1l] = z0+ela*(zl+ela*z2)

ela*eplm; elc = ela*ep2m

z2 = ym2[1]

73.3098
83.4459
86.0631
26.7493
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end

y[1+2*M] = zO+elc*(zl+elc*z2)
end
else
println("N = ",N," was not divisible by two or three!")
throw(ArgumentError)
end
return y

y[l+M] =

z0+elb*(z1+elb*z2)

using FFTW,LinearAlgebra,Printf

eplm=exp(-2im*pi/3)
ep2m=-exp(-1lim*pi/3)

println("#Powers of 2 divided out first...")
@printf ("#%3s %4s %8s %22s\n","p","q","N"," |myfft-fft|")

for p=3:7
for gq=3:7

N=2"p*3~q
x=rand(N)

end

end

myxhat=myfft(x)

xhat=fft(x)
e=norm(myxhat-xhat)

@printf("%4d %4d %8d %22.14e\n",p,q,N,e)

produced the output

#Powers of 2 divided out first...

# p

w

u Uttt A A BB DWW WLWW

q

3
4
5
6
7
3
4
5
6
7
3
4
5

N

216
648
1944
5832
17496
432
1296
3888
11664
34992
864
2592
7776

N O N BRFPF A RFPF WRFRESNDNOPFE WO

Imyfft-fft|

.38426118314508e-14
.94698527790608e-13
.64018794991560e-13
.29776115736782e-12
.76968246855713e-12
.04435700445245e-13
.99681539791472e-13
.38092017096323e-12
.74365178037615e-12
.57336726449478e-11
.35192834314066e-13
.13742438133776e-13
.82327734173326e-12
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6 23328
7 69984
3 1728
4 5184
5 15552
6 46656
7 139968
3 3456
4 10368
5 31104
6 93312
7 279936
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while the program

1 function myfft(x)
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N=Tlength(x)
if N ==

return x
end

.58978864411643e-12
.21747656002058e-11
.72447281294631e-13
.80975400083728e-12
.03296925153049e-12
.08550665805578e-11
.74341569264210e-11
.01281010309223e-12
.50824622336540e-12
.17944050698531e-11
.00711646928212e-11
.34149796586094e-10

y = Array{Complex} (undef,N)

if N % 3 ==

ymO=myfft(x[1:3:N-2])
yml=myfft(x[2:3:N-1])
ym2=myfft(x[3:3:N])

M=NS<+3

for 1. = 1:M
ela = exp(-
elb =

y[l] =
y[l+M] =
y[1+2*M] =
end
elseif N % 2 == 0

ye=myfft(x[1l:2:
yo=myfft(x[2:2:

M=N=<+2
for 1 = 1:M
z0 = ye[l]

z1 = exp(-1im*2*pi*(1-1)/N)*yo[1]
z0 + z1

y[l] =

2im*pi*(1-1)/N)

ela*eplm; elc = ela*ep2m

z0 = ymO[l]; z1 = ym1[1l]; z2 = ym2[1]
z0+ela*(zl+ela*z2)
z0+elb*(z1l+elb*z2)

z0+elc*(z1l+elc*z2)

N-17)
NT)

y[l+M] = z0 - z1

end
else
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end

println("N = ",N," was not divisible by two or three!")
throw(ArgumentError)

return y

end

using FFTW,LinearAlgebra,Printf

eplm=exp(-2im*pi/3)
ep2m=-exp(-1lim*pi/3)

println("#Powers of 3 divided out first...")
@printf ("#%3s %4s %8s %22s\n","p","q","N","|myfft-fft|")
for p=3:

7

for g=3:7

end
end

N=2"p*37q

x=rand(N)
myxhat=myfft(x)
xhat=fft(x)
e=norm(myxhat-xhat)

@printf("%4d %4d %8d %22.14e\n",p,q,N,e)

produced the output

#Powers of 3 divided out first...

# p

w

S oy Ul Uttt U1 & BB P WWWW

q N
3 216
4 648
5 1944
6 5832
7 17496
3 432
4 1296
5 3888
6 11664
7 34992
3 864
4 2592
5 7776
6 23328
7 69984
3 1728
4 5184
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|myfft-fft|

.70324722484054e-14
.08088452810020e-13
.05133426048045e-13
.39157626605692e-12
.07154531380795e-12
.12661196296191e-13
.01462916048588e-13
.42228808088904e-12
.82939239144728e-12
.64526329030565e-11
.42086717565762e-13
.83220301218190e-13
.98420942538996e-12
.92146490964623e-12
.40856827355689e-11
.85088020422243e-13
.73561537982483e-12
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6 5 15552  6.12431957204718e-12
6 6 46656  2.03236549761285e-11
6 7 139968 6.82520778329779%e-11
7 3 3456  1.02962852347354e-12
7 4 10368 3.63193611382776e-12
7 5 31104 1.23031393750261e-11
7 6 93312  4.23639756557958e-11
7 7 279936  1.40775536190812e-10

From the output we see dividing out by 2 first resulted in slightly less rounding error than
dividing out by 3 first. Different results may be obtained depending on the way in which
the exponential functions represented by ela, elb and elc are computed.
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