
Math 467/667: Programming Project 1

1. This question considers approximation of the area

A =

∫ π/2

0

f(z)dz where f(z) =
1√

1 + tan z

by various numerical and algebraic techniques.

(i) Use a computer algebra system (or pencil and paper if you prefer) to verify the
exact value of A is given by

A =
α

4

{
π +

3− α2

√
2

ln
(α−

√
2

α+
√
2

)
+ 4arctan(α2 − α

√
2)

}

where α =
√
1 +

√
2 and then show that A ≈ 1.060233292270744.

In Mathematica the worksheet

indicates the integral found by the computer algebra system and the expression given in
the assignment agree and are equal 1.06023329227074.

1

Math 467/667: Programming Project 1

(ii) Modify the program written in class or write your own to approximate A using the
composite Gauss quadrature rule of order O(h10) where h = (b−a)/m. Compute

Am = comp(f, 0, π/2,m) and Em = Am − E

for m = 2ℓ and ℓ = 1, 2, . . . , 12. The output should look like

l 2^l Am Em
1 2 1.060677017116208e+00 4.437248454676190e-04
2 4 1.060389233493366e+00 1.559412226259660e-04
3 8 1.060288268508819e+00 5.497623807904084e-05

Note values for l > 3 have been omitted in the above table.

The program

1 x=[0., 0.5384693101056829,
2 -0.5384693101056829, 0.9061798459386638, -0.9061798459386638]
3 A=[x.^0 x.^1 x.^2 x.^3 x.^4]'
4 B=[2,0,2/3,0,2/5]
5 W=A\B
6

7 function myf(x)
8 1/sqrt(1+tan(x))
9 end

10 function quad(f)
11 W'*f.(x)
12 end
13 function myg(j,x)
14 h/2*myf(x*h/2+a+h*j+h/2)
15 end
16 function comp(f)
17 s=0
18 for i=0:(m-1)
19 s=s+quad(x->myg(i,x))
20 end
21 return s
22 end
23

24 using Printf
25 @printf("#%3s %6s %22s %22s\n","l","2^l","Am","Em");
26 for l=1:12
27 global a,b,m,h
28 m=2^l
29 a=0
30 b=pi/2
31 h=(b-a)/m

2

Math 467/667: Programming Project 1

32 ap=comp(myf)
33 ex=1.060233292270744
34 er=ap-ex
35 @printf("%4d %6d %22.15e %22.15e\n",l,m,ap,er)
36 end

when run produces the output

l 2^l Am Em
1 2 1.060677017116208e+00 4.437248454636222e-04
2 4 1.060389233493366e+00 1.559412226219692e-04
3 8 1.060288268508819e+00 5.497623807504404e-05
4 16 1.060252702176081e+00 1.940990533744191e-05
5 32 1.060240149969156e+00 6.857698412021662e-06
6 64 1.060235716000310e+00 2.423729565492749e-06
7 128 1.060234149041726e+00 8.567709819384817e-07
8 256 1.060233595159112e+00 3.028883677202998e-07
9 512 1.060233399353375e+00 1.070826309845785e-07
10 1024 1.060233330129361e+00 3.785861690808190e-08
11 2048 1.060233305655643e+00 1.338489852287239e-08
12 4096 1.060233297002993e+00 4.732249037076031e-09

Note that the first three lines of output agrees with the sample output provided in the
statement of the question.

(iii) Plot logEm versus log h for the output obtained in the previous question. Do
the points lie on a straight line? What is the slope of the line? What does the
slope of the line indicate about the numerically observed order of convergence
for this calculation? Is the numerically observed order of convergence consistent
with what was expected theoretically? Explain.

The graph is

 1x10
-9

 1x10
-8

 1x10
-7

 1x10
-6

 1x10
-5

 0.0001

 0.001

 0.001 0.01 0.1

e
r
r
o
r

h

Composite 5-point Gauss Quadrature

Em

 C h1.5

Note that the points lie on a straight line with a slope approximately equal to 1.5. This
indicates that the order of convergence is O(h1.5). As the theoretical order of convergence

3

Math 467/667: Programming Project 1

was supposed to be O(h10), this is much less than what was expected. The reason for this is
apparently because tan z → ∞ as z → π/2 with the result that the function 1/

√
1 + tan z

is not well approximated by polynomials near z = π/2.

(iv) Make the change of variables y = tan z to transform the integral appearing in
question (i) to the form ∫ ∞

0

g(y)dy.

Write down an explicit formula for g(y).

Noting that

z = arctan y it follows that dz =
dy

1 + y2
.

The limits of the transformed integral may be found by noting y → ∞ as z ↗ π/2 and
y = 0 when z = 0. Thus,

∫ π/2

0

dz√
1 + tan z

=

∫ ∞

0

dy

(1 + y2)
√
1 + y

.

Therefore,

g(y) =
1

(1 + y2)
√
1 + y

.

(v) Show that the further change of variables x = 2y/(1 + y) − 1 transforms the
integral in question (iv) into

∫ 1

−1

h(x)
√
1− x dx where h(x) =

2−1/2

1 + x2
.

For the limits, note that

x
∣∣∣
y=0

=
2y

1 + y
− 1

∣∣∣
y=0

= −1 and lim
y→∞

x = lim
y→∞

2y

1 + y
− 1 = 2− 1 = 1.

Now, solving for y yields

x(1 + y) = 2y − (1 + y), x+ xy = y − 1, x+ 1 = y − xy so y =
1 + x

1− x
.

Consequently, by the chain rule

dy

dx
=

d

dx

1 + x

1− x
=

(1− x) + (1 + x)

(1− x)2
=

2

(1− x)2
.

4

Math 467/667: Programming Project 1

Therefore,∫ ∞

0

1

(1 + y2)
√
1 + y

=

∫ 1

−1

1(
1 +

(1 + x

1− x

)2
)√

1 +
(1 + x

1− x

) · 2

(1− x)2
dx

=

∫ 1

−1

1(
(1− x)2 + (1 + x)2

)√
2/(1− x)

· 2 dx

=

∫ 1

−1

√
2
√
1− x

2 + 2x2
dx =

∫ 1

−1

√
1− x√

2(1 + x2)
dx

verifies that h(x) = 2−1/2/(1 + x2).

(vi) Define the weighted inner product and norm as

(f, g) =

∫ 1

−1

f(x)g(x)
√
1− x dx and ∥f∥ =

√
(f, f).

Use a computer algebra system (or pencil and paper if you prefer) to find the
orthonormal polynomials pn with respect to this inner product for n = 0, 1, . . . , 8.

In Mathematica the worksheet

5

Math 467/667: Programming Project 1

indicates that

p8(x) =

√
35

16777216 · 21/4
(
2492243− 8234600x− 96763884x2 + 84746536x3

+ 566985650x4 − 208134360x5 − 1037918700x6 + 141430680x7 + 583401555x8
)
.

(vii) Find the eight roots xk of p8(x) and the corresponding weights wk such that∫ 1

−1

xj
√
1− x dx =

7∑
k=0

wkx
j
k for j = 0, 1, . . . , 15.

For reference the roots and weights you find should be consistent with

k x_k w_k
0 -0.9624795445887677 0.1340407182534346
1 -0.8075678953806377 0.2835409515409297
2 -0.5496419355080006 0.3727176289987073

Note values for k > 2 have been omitted from the above table.

Continuing the worksheet from the previous problem compute the roots of p8(x) as

To find the weights first compute the integrals

Bj =

∫ 1

−1

xj
√
1− x dx for j = 0, 1, . . . , 7

6

Math 467/667: Programming Project 1

using Mathematica as

Then find the weights by solving the system of linear equations

7∑
k=0

wkx
j
k = Bj for j = 0, 1, . . . , 7.

Note that similar equations for j = 8, . . . , 15 are automatically satisfied by the orthogo-
nality properties of the the polynomials. The Julia program

1 x=[-0.9624795445887677, -0.8075678953806377, -0.5496419355080006,
2 -0.2215282765736194, 0.1349372926691484, 0.4742968263639596,
3 0.7532724966821605, 0.9362867939115145]
4 A=[x.^0 x.^1 x.^2 x.^3 x.^4 x.^5 x.^6 x.^7]'
5 B=[1.885618083164127, -0.3771236166328253, 0.5926228261372970,
6 -0.2334574769631776, 0.3444722212533599, -0.1701640028429831,
7 0.2409924143584388, -0.1342917910867198]
8

9 w=A\B
10 using Printf
11 @printf("#%3s %22s %22s\n","k","x[k]","w[k]")
12 for k=1:8
13 @printf("%4d %22.16f %22.16f\n",k,x[k],w[k])
14 end

calculates the weights and produces the output

k x[k] w[k]
1 -0.9624795445887677 0.1340407182534332
2 -0.8075678953806377 0.2835409515409342
3 -0.5496419355080006 0.3727176289986990
4 -0.2215282765736194 0.3865591072659580
5 0.1349372926691484 0.3306471833577256
6 0.4742968263639596 0.2290526625904178
7 0.7532724966821605 0.1172417908442615
8 0.9362867939115145 0.0318180403126977

which agrees to within rounding error of the desired output.

7

Math 467/667: Programming Project 1

(viii) Use the weighted eight-point Gauss quadrature method developed above to ap-
proximate the area A. What is the error in this approximation? How does the
composite formula used in question (ii) compare in terms of computational effort?

Modification of the Julia program in the previous question led to

1 x=[-0.9624795445887677, -0.8075678953806377, -0.5496419355080006,
2 -0.2215282765736194, 0.1349372926691484, 0.4742968263639596,
3 0.7532724966821605, 0.9362867939115145]
4 A=[x.^0 x.^1 x.^2 x.^3 x.^4 x.^5 x.^6 x.^7]'
5 B=[1.885618083164127, -0.3771236166328253, 0.5926228261372970,
6 -0.2334574769631776, 0.3444722212533599, -0.1701640028429831,
7 0.2409924143584388, -0.1342917910867198]
8

9 w=A\B
10 f(x)=2^(-1/2)/(1+x^2)
11 approx=w'*f.(x)
12 exact=1.060233292270744
13 error=approx-exact
14 println("A=",approx)
15 println("error=",error)

with the output

A=1.0602323209055566
error=-9.713651873966e-7

After all the work was done to find the roots and weights, it took only 8 functional evalu-
ations of h(x) to approximate A to within about 9.7× 10−7. This error level is similar to
taking l = 7 in the answer to question (ii). Thus, the composite formula took

27 · 5 = 640

functional evaluations to arrives at a similar accuracy. Neglecting all the work needed to
construct the new formula, which was anyway not much different that making the original
Gauss quadrature rule in the first place, we conclude that the new weighted formula is
640/8 = 100 times more efficient.

(ix) [Extra Credit and Math/CS 667] Let quad_w(f) be the weighted eight-point
method above and let quad(f) be the standard five-point Gauss rule. Show that∫ b

b−h

ϕ(t)
√
b− t dt =

h3/2

23/2

∫ 1

−1

ϕ
(xh

2
+ b− h

2

)√
1− x dx.

Setting h = (b− a)/m leads to the hybrid composite quadrature formula∫ b

a

f(x)dx ≈ hybrid(f, a, b,m) =
m−2∑
j=0

quad(gj)+ quad_w(ψ)

8

Math 467/667: Programming Project 1

where f(x) = ϕ(x)
√
b− x,

gj(x) =
h

2
f
(xh

2
+ a+ hj +

h

2

)
and ψ(x) =

h3/2

23/2
ϕ
(xh

2
+ b− h

2

)
.

Numerically determine the order of convergence of this method by approximating

1√
2

∫ 1

−1

√
1− x

1 + x2
dx

following a similar procedure as in questions (ii) and (iii). Is there a way to fix
this method so it converges faster?

Consider the change of variables given by

t =
xh

2
+ b− h

2
and dt =

h

2
dx.

Since t = b when x = 1 and t = b− h when x = −1 the limits are correct and∫ b

b−h

ϕ(t)
√
b− t dt =

∫ 1

−1

ϕ
(xh

2
+ b− h

2

)√
b−

(xh
2

+ b− h

2

)
· h
2
dx

=
h3/2

23/2

∫ 1

−1

ϕ
(xh

2
+ b− h

2

)√
1− x dx.

This verifies the change of variables. Now, the Julia program

1 Gx=[0., 0.5384693101056829,
2 -0.5384693101056829, 0.9061798459386638, -0.9061798459386638]
3 GA=[Gx.^0 Gx.^1 Gx.^2 Gx.^3 Gx.^4]'
4 GB=[2,0,2/3,0,2/5]
5 Gw=GA\GB
6

7 Wx=[-0.9624795445887677, -0.8075678953806377, -0.5496419355080006,
8 -0.2215282765736194, 0.1349372926691484, 0.4742968263639596,
9 0.7532724966821605, 0.9362867939115145]

10 WA=[Wx.^0 Wx.^1 Wx.^2 Wx.^3 Wx.^4 Wx.^5 Wx.^6 Wx.^7]'
11 WB=[1.885618083164127, -0.3771236166328253, 0.5926228261372970,
12 -0.2334574769631776, 0.3444722212533599, -0.1701640028429831,
13 0.2409924143584388, -0.1342917910867198]
14 Ww=WA\WB
15

16 exact=1.060233292270744
17

18 function myh(x)
19 2^(-1/2)/(1+x^2)

9

Math 467/667: Programming Project 1

20 end
21 function myf(x)
22 myh(x)*sqrt(1-x)
23 end
24

25 function Gquad(f)
26 Gw'*f.(Gx)
27 end
28 function Wquad(f)
29 Ww'*f.(Wx)
30 end
31

32 function Gmyg(j,x)
33 h/2*myf(x*h/2+a+h*j+h/2)
34 end
35 function Wmyg(x)
36 (h/2)^(3/2)*myh(x*h/2+b-h/2)
37 end
38 function comp(f)
39 s=0
40 for i=0:(m-2)
41 s=s+Gquad(x->Gmyg(i,x))
42 end
43 s=s+Wquad(x->Wmyg(x))
44 return s
45 end
46

47 using Printf
48 @printf("#%3s %6s %22s %22s\n","l","2^l","Am","Em");
49 for l=1:12
50 global a,b,m,h
51 m=2^l
52 a=-1
53 b=1
54 h=(b-a)/m
55 ap=comp(myf)
56 er=ap-exact
57 @printf("%4d %6d %22.15e %22.15e\n",l,m,ap,er)
58 end

with output

l 2^l Am Em
1 2 1.060233193109279e+00 -9.916146548327731e-08
2 4 1.060233291769965e+00 -5.007791958888674e-10

10

Math 467/667: Programming Project 1

3 8 1.060233292285723e+00 1.497912904824261e-11
4 16 1.060233292276199e+00 5.455191853798169e-12
5 32 1.060233292272703e+00 1.959099549253551e-12
6 64 1.060233292271441e+00 6.974421040695233e-13
7 128 1.060233292270992e+00 2.478017790963349e-13
8 256 1.060233292270833e+00 8.859579736508749e-14
9 512 1.060233292270775e+00 3.086420008457935e-14
10 1024 1.060233292270755e+00 1.065814103640150e-14
11 2048 1.060233292270748e+00 4.440892098500626e-15
12 4096 1.060233292270746e+00 2.442490654175344e-15

led to the graph

 1x10
-15

 1x10
-14

 1x10
-13

 1x10
-12

 1x10
-11

 1x10
-10

 1x10
-9

 0.001 0.01 0.1

e
r
r
o
r

h

Composite 5-point Gauss Quadrature

Em

 C h1.5

which shows the numerical rate of convergence is disappointingly still O(h1.5), though the
actual error is significantly less than it was before. It seems the rate of convergence is
being spoiled by taking the last interval over which quad(gj) is applied too close to the
singularity at x = 1. To fix the method, I would try to vary the size of h so it was larger
for the last piece of the integral represented by quad_w(ψ).

11

