From Last Triesday

$$
D^{2}=\frac{4}{h^{2}} \sum_{j=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{1}{2 j+1}\binom{-1 / 2}{j} \frac{1}{2 \ell+1}\binom{-1 / 2}{j}\left(\frac{1}{2} \Delta_{0}\right)^{2 j+2 \ell+2}
$$

From last Thursday replace so by 0 to obtain.. -

$$
\begin{aligned}
& D^{2}=\frac{4}{h^{2}}\left(\frac{1}{2} \Delta_{0}\right)^{2}=\frac{1}{h^{2}} \Delta_{0}^{2}+\mathcal{O}\left(h^{2}\right) . \\
& D^{2} u\left(x_{k}\right) \approx \frac{1}{h^{2}} \Delta_{0}^{2} u_{k}=\frac{1}{h^{2}}\left(u_{k+1}-2 u_{k}+u_{k-1}\right)
\end{aligned}
$$

Poisson Equation 8.2 where $u\left(x_{k}\right) \approx u_{k}$

$$
\nabla^{2} u=f \quad \text { for }(x, y) \in \Omega_{\uparrow d}
$$

on

$$
u_{x x}+u_{y y}=f
$$

4 domain:

- open get
- Connected
- bounded
- piecewise smooth
- piecewise 5 mouth
boundary.

Boundary condition (Dirchlet)

$$
v(x, y)=\varphi(x, y) \text { for }(x, y) \in \partial \Omega
$$

$\partial \Omega$ boundary of Ω
Ω open means the set doernit contain its boundary.
Discretige the solution on a grid... contain its bound

$$
\begin{aligned}
& x_{k}=x_{0}+k h \\
& y_{l}=y_{0}+l h
\end{aligned}
$$

$$
\text { cl } \Omega=\bar{\Omega}=\Omega U \partial \Omega
$$

$u\left(x_{k}, y_{l}\right) \approx u_{k}, e^{*}$ stone these values....

- On the boundary, use the boundary conditions.
- Inside use the stencil, if possible.
- What to do wite the near boundary points?

Before working abort the - near boundary points try a simpler geometry...

no near bounders points...
how to store the interior points' as a vector to solve in a linear akebra problem?
store 36 points in a vector...
From the 1-dimenrional case
To discretize the differential equation divide the domain $[a, b]$ into $m+1$ equal pieces of size $h=(b-a) /(m+1)$. Consider the grid points $x_{k}=a+h k$ for $k=1, \ldots, m$. Let y_{k} be approximation of the exact solution $y\left(x_{k}\right)$ at each grid point. Note the boundary conditions imply $y_{0}=\alpha$ and $y_{m+1}=\beta$.

store the approximation in the vector y.
Solve $A y=c$ to find y
In 27 weill do this...

What does A look like? $u_{x x}+u_{y y}=f$

How to efficiently sole the correspunding limen alae ra problem..

Note: the matrix and RHS are missing some details. In particular
Questions the off-diagonal sequences of 1's have occasional 0's in them.
(1) In the matrix A in $A y$ ec invertible... If so then there is a unique solution... (yes)
(2) If $h \rightarrow 0$ does the approximation converge to the exact solution. Hes How fart? $O\left(h^{2}\right)$
(3) How best to efficiently do the numeries?.

- Maybe use a sparse solver based Gaussian elimination that pays attention to the O^{\prime} s.
- Use an Iterative approximation method to approximate the solution to $A y=c$
Doit need to work to hand to solve Ay $=0$ because the exaction of this linear alfobva puiblem is at best an approximation of the situation to the PDE.

Next time:

- What to do with the near boundary points.
- a computational demonstration.

