
Homework 2 Math 467/667

Exercise 2.1 Derive the three-step and four-step Adams–Moulton meth-
ods and the three-step Adams–Bashforth method.

Solution: For the three-step Adams–Moulton method set ρ(w) = w2(w−1)
and look for the polynomial σ(w) of degree 3 such that

ρ(w)− σ(w) logw = O
(
|w − 1|4

)
.

Substituting ξ = w − 1 yields

ρ(w)

logw
=

ρ(1 + ξ)

log(1 + ξ)
=

(1 + ξ)2ξ

ξ − 1
2ξ

2 + 1
3ξ

3 − 1
4ξ

4 +O(ξ5)

=
1 + 2ξ + ξ2

1− 1
2ξ +

1
3ξ

2 − 1
4ξ

3 +O(ξ4)
.

Next, since
1

1− α
= 1 + α+ α2 + α3 +

α4

1− α

then setting
α = 1

2ξ −
1
3ξ

2 + 1
4ξ

3 +O(ξ4)

α2 = 1
4ξ

2 − 1
3ξ

3 +O(ξ4)

α3 = 1
8ξ

3 +O(ξ4)

yields
ξ

log(1 + ξ)
= 1 + 1

2ξ −
1
12ξ

2 + 1
24ξ

3 +O(ξ4).

Consequently,

ρ(w)

logw
= (1 + 2ξ + ξ2)

(
1 + 1

2ξ −
1
12ξ

2 + 1
24ξ

3 +O(ξ4)
)

= 1 + 5
2ξ +

23
12ξ

2 + 3
8ξ

3 +O(ξ4)

and we take

σ(w) = 1 + 5
2 (w − 1) + 23

12 (w − 1)2 + 3
8 (w − 1)3

= 1 + 5
2 (w − 1) + 23

12 (w
2 − 2w + 1) + 3

8 (w
3 − 3w2 + 3w − 1)

= 3
8w

3 + 19
24w

2 − 5
24w + 1

24 .
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Therefore the 3-step Adams–Moulton method is

yn+3 = yn+2 + h
[
3
8f(tn+3, yn+3) +

19
24f(tn+2, yn+2)

− 5
24f(tn+1, yn+1) +

1
24f(tn, yn)

]
.

The four-step Adams–Moulton method is similar. Set ρ(w) = w3(w−1)
and look for the polynomial σ(w) of degree 4 such that

ρ(w)− σ(w) logw = O
(
|w − 1|5

)
.

Substituting ξ = w − 1 and taking all expansions one step further

ρ(w)

logw
=

ρ(1 + ξ)

log(1 + ξ)
=

(1 + ξ)3ξ

ξ − 1
2ξ

2 + 1
3ξ

3 − 1
4ξ

4 + 1
5ξ

5 +O(ξ6)

=
1 + 3ξ + 3ξ2 + ξ3

1− 1
2ξ +

1
3ξ

2 − 1
4ξ

3 + 1
5ξ

4 +O(ξ5)
.

Next, since
1

1− α
= 1 + α+ α2 + α3 + α4 +

α5

1− α

then setting
α = 1

2ξ −
1
3ξ

2 + 1
4ξ

3 − 1
5ξ

4 +O(ξ5)

α2 = 1
4ξ

2 − 1
3ξ

3 + 13
36ξ

4 +O(ξ5)

α3 = 1
8ξ

3 − 1
4ξ

4 +O(ξ5)

α4 = 1
16ξ

4 +O(ξ5)

yields
ξ

log(1 + ξ)
= 1 + 1

2ξ −
1
12ξ

2 + 1
24ξ

3 − 19
720ξ

4 +O(ξ5).

Consequently,

ρ(w)

logw
= (1 + 3ξ + 3ξ2 + ξ3)

(
1 + 1

2ξ −
1
12ξ

2 + 1
24ξ

3 − 19
720ξ

4 +O(ξ5)
)

= 1 + 7
2ξ +

53
12ξ

2 + 55
24ξ

3 + 251
720ξ

4 +O(ξ5)
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and we take

σ(w) = 1 + 7
2 (w − 1) + 53

12 (w − 1)2 + 55
24 (w − 1)3 + 251

720 (w − 1)4

= 251
720w

4 + 323
360w

3 − 11
30w

2 + 53
360w − 19

720 .

Therefore the 4-step Adams–Moulton method is

yn+4 = yn+3 + h
[
251
720f(tn+4, yn+4) +

323
360f(tn+3, yn+3)

− 11
30f(tn+2, yn+2) +

53
360f(tn+1, yn+1)− 19

720f(tn, yn)
]
.

The last is the three-step Adams–Bashforth method. In this case
ρ(w) = w2(w − 1) as for the three-step Adams–Moulton method but σ(w)
is now chosen to be the second degree polynomial such that

ρ(w)− σ(w) logw = O
(
|w − 1|3

)
.

Therefore, everything can be computed using fewer terms. Substituting
ξ = w − 1 yields

ρ(w)

logw
=

ρ(1 + ξ)

log(1 + ξ)
=

(1 + ξ)2ξ

ξ − 1
2ξ

2 + 1
3ξ

3 +O(ξ4)

=
1 + 2ξ + ξ2

1− 1
2ξ +

1
3ξ

2 +O(ξ3)
.

Next, since
1

1− α
= 1 + α+ α2 +

α3

1− α

then setting
α = 1

2ξ −
1
3ξ

2 +O(ξ3)

α2 = 1
4ξ

2 +O(ξ3)

yields
ξ

log(1 + ξ)
= 1 + 1

2ξ −
1
12ξ

2 +O(ξ3).

Consequently,

ρ(w)

logw
= (1 + 2ξ + ξ2)

(
1 + 1

2ξ −
1
12ξ

2 +O(ξ3)
)

= 1 + 5
2ξ +

23
12ξ

2 +O(ξ3)
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and we take
σ(w) = 1 + 5

2 (w − 1) + 23
12 (w − 1)2

= 1 + 5
2 (w − 1) + 23

12 (w
2 − 2w + 1)

= 23
12w

2 − 4
3w + 5

12 .

Therefore the 3-step Adams–Bashforth method is

yn+3 = yn+2 + h
[
23
12f(tn+2, yn+2)− 4

3f(tn+1, yn+1) +
5
12f(tn, yn)

]
.

As a remark, it seems odd to me that this problem ends with the 3-step
Adams–Bashforth method which is the easiest to derive scheme.
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Exercise 2.4 Determine the order of the three-step method

yn+3 − yn = h
[
3
8f(tn+3, yn+3) +

9
8f(tn+2, yn+2) +

9
8f(tn+1, yn+1)

+ 3
8f(tn, yn)

]
,

the three-eights scheme. Is it convergent?

Solution: The truncation error is

ψn = y(tn+3)− y(tn)− h
[
3
8f(tn+3, y(tn+3)) +

9
8f(tn+2, y(tn+2))

+ 9
8f(tn+1, y(tn+1)) +

3
8f(tn, y(tn))

]
= y(tn+3)− y(tn)− h

[
3
8y

′(tn+3) +
9
8y

′(tn+2)

+ 9
8y

′(tn+1) +
3
8y

′(tn)
]
.

Taylor series imply

y(tn+3)− y(tn)

= 3hy′(tn) +
(3h)2

2
y′′(tn) +

(3h)3

6
y(3)(tn) +

(3h)4

24
y(4)(tn) +O(h5)

= 3hy′(tn) +
9h2

2 y′′(tn) +
9h3

2 y(3)(tn) +
9h4

8 y(4)(tn) +O(h5)

and also

y′(tn+3) = y′(tn) + 3hy′′(tn) +
(3h)2

2
y(3)(tn) +

(3h)3

6
y(4)(tn) +O(h4)

y′(tn+2) = y′(tn) + 2hy′′(tn) +
(2h)2

2
y(3)(tn) +

(2h)3

6
y(4)(tn) +O(h4)

y′(tn+1) = y′(tn) + hy′′(tn) +
h2

2
y(3)(tn) +

h3

6
y(4)(tn) +O(h4).

Since

3
8y

′(tn+3) =
3
8y

′(tn) +
9h
8 y

′′(tn) +
27h2

16 y(3)(tn) +
27h3

16 y(4)(tn) +O(h4)

9
8y

′(tn+2) =
9
8y

′(tn) +
9h
4 y

′′(tn) +
9h2

4 y(3)(tn) +
3h3

2 y(4)(tn) +O(h4)

9
8y

′(tn+1) =
9
8y

′(tn) +
9h
8 y

′′(tn) +
9h2

16 y
(3)(tn) +

3h3

16 y
(4)(tn) +O(h4)
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then

3
8y

′(tn+3) +
9
8y

′(tn+2) +
9
8y

′(tn+1) +
3
8y

′(tn)

= 3y′(tn) +
9h
2 y

′′(tn) +
9h2

2 y(3)(tn) +
27h3

8 y(4)(tn) +O(h4).

It follows that

ψn = 3hy′(tn) +
9h2

2 y′′(tn) +
9h3

2 y(3)(tn) +
9h4

8 y(4)(tn) +O(h5)

− h
[
3y′(tn) +

9h
2 y

′′(tn) +
9h2

2 y(3)(tn) +
27h3

8 y(4)(tn) +O(h4)
]

= − 9h4

4 y(4)(tn) +O(h5).

As ψn = O(h4) and no more, then the three-eights method is order 3.
The fact that the three-eights method convergent follows from the

Dahlquist equivalence by checking the root condition. In this case

ρ(w) = w3 − 1 = (w − 1)(w2 + w + 1)

and setting a = 1, b = 1 and c = 1 in the quadratic formula yields

w =
−b±

√
b2 − 4ac

2a
=

−1± i
√
3

2

which are the two complex cubic roots of unity.
As all roots are simple and on the boundary of the unit disk, the root

condition is satisfied. This shows the method is convergent.
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Exercise 2.7 Prove that the backward differentiation formulae

yn+2 − 4
3yn+1 +

1
3yn = 2

3hf(tn+2, yn+2) (2.15)

yn+3 − 18
11yn+2 +

9
11yn+1 − 2

11yn = 6
11hf(tn+3, yn+3) (2.16)

are convergent.

Solution: By the Dahlquist equivalence theorem it is sufficient to show
that the multistep method is of order p ≥ 1 and the polynomial ρ obeys the
root condition. From the derivations of (2.15) and (2.16) we already know
the orders of these methods are p = 2 and p = 3 respectively. What’s left
is to check the root condition.

For (2.15) we have

ρ(w) = w2 − 4
3w + 1

3

Since ρ(1) = 0 as it always will, we know that w − 1 is a factor. Dividing
then yields that

ρ(w) = (w − 1)(w − 1
3 )

and so the roots are w = 1 and w = 1
3 . The root w = 1 is on the boundary

of the unit disk and simple (multiplicity 1) while the root w = 1
3 is strictly

inside. Therefore the root condition is satisfied and the method convergent.
For (2.16) we have

ρ(w) = w3 − 18
11w

2 + 9
11w − 2

11

In this case dividing by w − 1 yields

ρ(w) = (w − 1)(w2 − 7
11w + 2

11 )

The roots of the quadratic term may be obtained setting a = 1, b = − 7
11

and c = 2
11 in the quadratic formula as

w =
−b±

√
b2 − 4ac

2a
=

7/11±
√

(7/11)2 − 4(2/11)

2
=

7± i
√
39

22
.

Since ∣∣∣7± i
√
39

22

∣∣∣ = √
72 + 39

22
=

√
88

22
=

√
2

11
< 1

the roots of the quadratic factor are strictly inside the unit disc. Therefore
the method is convergent.
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Exercise 2.9 An s-step method with σ(w) = βws−1(w + 1) and order s
might be superior to a BDF in certain situations.

a Find a general formula for ρ and β as done for the BDF.

Solution: As this is an implicit method, the goal is to find a monic poly-
nomial ρ(w) such that

ρ(w)− σ(w) logw = O
(
|w − 1|s+1

)
.

In order to avoid multiplication of Taylor series we set v = w−1, note that
O(|w − 1|s+1) = O(|v − 1|s−1) as w → 1 and write

vsρ(v−1) = −β(1 + v) log v +O
(
|v − 1|s+1

)
.

Since

log v = log(1 + (v − 1)) =
s∑

m=1

(−1)m−1

m
(v − 1)m +O

(
|v − 1|s+1

)
,

it follows that

(1 + v) log v = (2 + (v − 1)) log v

= 2
s∑

m=1

(−1)m−1

m
(v − 1)m +

s−1∑
m=1

(−1)m−1

m
(v − 1)m+1 +O

(
|v − 1|s+1

)
= 2(v − 1) +

s∑
m=2

{2(−1)m−1

m
+

(−1)m

m− 1

}
(v − 1)m +O

(
|v − 1|s+1

)
= 2(v − 1) +

s∑
m=2

{ (−1)m

m− 1
− 2(−1)m

m

}
(v − 1)m +O

(
|v − 1|s+1

)
= 2(v − 1) +

s∑
m=3

2−m

m2 −m
(1− v)m +O

(
|v − 1|s+1

)
.

We deduce that

vsρ(v−1) = β
{
2(1− v) +

s∑
m=3

m− 2

m2 −m
(1− v)m

}
8
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Therefore

ρ(w) = βv−s
{
2(1− v) +

s∑
m=3

m− 2

m2 −m
(1− v)m

}
= β

{
2(ws − ws−1) +

s∑
m=3

m− 2

m2 −m
ws−m(w − 1)m

}
To finish the problem we find the value of β so that ρ(w) is a monic poly-
nomial. Equating coefficients of ws yields

β =
(
2 +

s∑
m=3

m− 2

m2 −m

)−1

.

b Derive explicitly such methods for s = 2 and s = 3.

Solution: If s = 2 then β = 1/2 and

ρ(w) = 2β(w2 − w) = w2 − w.

The resulting method is

yn+2 = yn+1 +
h
2

[
f(tn+2, yn+2) + f(tn+1, yn+1)

]
which is actually a one-step method and the trapezoid method in disguise.

If s = 3 then β = (2 + 1
6 )

−1 = 6
13 and

ρ(w) = 12
13 (w

3 − w2) + 1
13 (w − 1)3

= 12
13 (w

3 − w2) + 1
13 (w

3 − 3w2 + 3w − 1)

= w3 − 15
13w

2 + 3
13w − 1

13 .

The resulting method is

yn+3 = 15
13yn+2 − 3

13yn+1 − 1
13yn + 6h

13

[
f(tn+3, yn+3) + f(tn+2, yn+2)

]
.

c Are the last two methods convergent?
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Solution: When s = 2 the trapezoid method is convergent. When s = 3
we check the root condition. Factoring the root at w = 1 yields

ρ(w) = (w − 1)(w2 − 2
13w + 1

13 ).

The quadratic formula with a = 1, b = − 2
13 and c = 1

13 yields

w =
−b±

√
b2 − 4ac

2a
=

2±
√
4− 52

26
=

1± i
√
12

13
.

Therefore ∣∣∣1± i
√
12

13

∣∣∣ = √
13

13
=

1√
13

< 1

and the Dahlquist equivalence implies the s = 3 method is also convergent.
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