Homework 1 Math 467/667

Exercise 1.1 Apply the method of proof of Theorems 1.1 and 1.2 to prove
the convergence of the implicit midpoint rule

Yn+1 = Yn + hf(tn + %ha %(yn + yn—}-l))

and of the theta method

Yn+1 = Yn T h(ef(tna yn) + (1 - e)f(tn-i-l? yn-i-l))'

Solution: These methods are for approximating the differential equation

y' = f(t,y)  suchthat  y(to) = yo.

The goal is to show convergence as h — 0 on an interval [tg,T] where
T > ty is as large as desired. Divide the interval into a uniform grid by
setting ¢, = to + hn where h = (T — tg)/N is the step size and N is a
positive integer indicating the number of subintervals.

In particular, we need to show that the maximum error on the interval

Eny =max{l|e,|:n=0,...,N} =0 as h—0

Here e, = y, — y(t,,) is the difference between the approximation given by
the numerical scheme and the exact solution.

First consider the implicit midpoint rule and begin by computing the
truncation error

Yy = y(tn—H) - y(tn) - hf(tn + %ha %(y(tn) + y(tn+1)))'

Upon setting a = t,, + %h for convenience, Taylor’s theorem then implies

Y(tns1) = (@) + 53/(0) + oy (a) + O(H)
and . 2
(1) = yla) — /(@) + "o (a) + OGFY)

Yn = hf(a,y(a)) —hf(a,5(y(tn) + y(tns1))) + O(h?).
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Assuming f is Lipshitz continuous in the second variable with constant A,
further estimates yield

n| < RA|y(a) — 2(y(tn) + y(tns1))| + O(R®).

Adding the Taylor series expansions for y(t,) and y(t,41) implies

Y(tn) + y(tnt1) = 2y(a) + O(h2)-

Consequently, |1,]| < RA|O(R?)| + O(h3) and so 1, = O(h3).
To prove convergence, define e, = y, — y(t,) and estimate e, in
terms of e,,. Thus,

ent1 = Yn+1 — Y(tnt1)
= Yn + hf (tn + 35 5Yn + Ynt1)) — Un — y(tn)
= hf(tn + 3hy 5 (y(tn) + y(tat1)))
=en + hf(tn + 3P 2 (Yn + Yns1))
—hf(tn + 5h, 5(y(tn) +y(tns1))) + O(h?).

Now, since

F(tn 4 50y 5 (Un + Ynt1)) — f(tn + 58, 5 (y(tn) + y(tni1)))]
<A (Wn + Ynt1) — 5 (W(tn) + y(tns1)))| < Slenl + Slenta]

it follows that
|ent1] < [en] + ’E—A!en! + h_;\‘en+1| +O(h%).
Therefore, provided A\ < 2 we obtain

1+ hM/2
en 1] < (1_—mfz)‘€n‘ +eh’.

Assuming ey = 0, induction then results in

1+hX/2\7
el < TIR) T 1SN f(EIEY Y
mh= T2 = 1— hA/2 '
1—h\/2
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Estimating as

1+hA/2 hA

1+—§exp<

hA )
1—hA/2 1 —hA/2

1—h\A/2
yields that

A 1 —hA/2
Since t,, = to+hn, then hn =t,,—tg < T —ty whenn =0,...,N. Therefore

len| < 1_—h>\/2{e><;p <M> — 1}ch2.

1—hA/2 hn\
len| < —/{exp <L> — 1}ch2.

A 1— h\/2

The above bound does not depend on n. Consequently,

1— 2 T —to) A
ENS#{GXP(%)—l}ChQ%O as h — oo.

Thus, the midpoint rule is convergent. Although we can infer the order of
the method is O(h?) from the truncation error 1,, = O(h3). The fact that
En = O(h?) can also be seen directly from the convergence proof.

If h — 0 then at some point hA < 1. Thus, 1 — hA/2 > 1/2 and one
immediately obtains

Ey < %{ exp (2(T —to)\) — 1}ch2 = O(h?).

Which again shows the midpoint rule converges with O(h?).
Next, consider the theta method. In this case the trucation error is

wn = y(tn—f—l) - y(tn) - h(ef(tnay(tn» + (1 - 9>f(tn+17y(tn+1)))‘

Taylor’s theorem yields
2

Y(tnia) = y(tn) + hy'(tn) + 53" (t) + O(R7)

as well as
y/(tn-i-l) = y/(tn) + hy//(tn) + O(h2)-
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Use the differential equation to write

ftn, y(tn)) =y (tn) and 1, y(tng1)) = 4 (tngr)

and substitute the result from Taylor’s theorem to obtain

Vn = y(tn) + by (t) + %y”(m +O(h*) —y(tn)

— 0y (tn) — h(1 = 0) (¥ (tn) + By (tn) + O(h2))
- h2{% ~ H}y"(tn) + Oh®).

After noting the truncation error is O(h3) when 6 = 1/2 but only O(h?) in
general, we write v, = O(h?) and procede with the convergence proof.

ent1 = Ynt1 — Y(tnt1)
= Yn + 1 (0f (tns yn) + (L= 0) f(tns1, Ynt1)) — Y — y(tn)
— h(0f (tn,y(tn)) + (1 = 0) f(tns1,Y(tnt1)))
<en+ he(f(tmyn) - f(tmy(tn)))
+h(1 = 0)(f(tns1, Yns1) — ftns1,y(tns1))) + O(R?).

Since the Lipshitz property of f implies
| f (b yn) = f(tns y(tn))| < Ayn — y(tn)| = Aex]
and
| f(tnats Yns1) = F(nr1, (1)) | S Myngr — y(tnra)| = Alen i
it follows that
lent1] < len| + hA|en| + RA(L — 0)|eni1| + O(R?).
Consequently,

1+ hA
Y

lent1] < < )|en|+ch2.
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Similar to before, assuming ey = 0 and using induction then results in

( 1+hAO )n 1

1—hA(1-6
len] < 1+(h>\0) — ch?
1—hA(1—0)
1 — hA(1 - 6) 1+hN  \"
= — 1 pch.
A {(1—h)\(1—0)> }C
Estimating as
1+ h\O hA hA
—1 <
—In1—0) " 1—ma1-9) _eXp<1—h>\(1—9)>

and using the fact that Ain < T — ¢ty yields that

1 — hA(1—0) hn
< _
en] < X\ {eXp(l—hA(1—9)> 1}Ch

<= Mx(l -2 { e (1 ETh;(?)—Ae)) N 1}Ch'

The above bound does not depend on n. Consequently,

1—h>\;1—9){

exp (1 ETh;(th)—)\Q)) — 1}ch — 0

as h — oo. Thus, the theta method is convergent. We can infer from the
truncation error when 6 = 1/2 that the method is O(h?) but when 6 # 1/2
that the theta method is only O(h). This latter fact may also be seen in
the above convergence estimate.

Enx <
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Exercise 1.3 We solve the scalar linear system y’ = ay with y(0) = 1.
a Let t, = hn and show the continuous output method

- 14 %a(t_tn)
1 La(t—tn)

u(t)

Yo with ¢, <t<t,y1, n=0,1,...,

is consistent with the values of y,, and y,,11 which are obtained by the
trapezoidal rule.

Solution: The trapezoid method is given by

Yn+1l = Yn T %h[f(tna yn) + f(tn-i—la yn+1)]'

Substituting f(t,y) = ay to obtain

Yn+1 = Yn + %h[ayn + ayn—i—l]
and solving yields
1+ %ah
T 1.7 9n
1-— §Clh
Induction and the fact that yo = 1 then implies

_<1+%ah>n _(1+%ah>n
n = 1— Zah o= 1—2ah/

Yn+1 =

To show the continuous output method is consistent with the these values
of y,, it is enough to show

lim u(t) = lim wu(t).

t—t;) t—t;,
Computing
1+ ta(t—t,)
lim u(t) = lim 2 =
o, (t) S gy T
along with
1+ La(t —t,_1) 1+ La(t, —tn_1)
lim u(t) = lim 2 1= 2 1
t—t; (®) t—t; 1 — %a(t — tn_1)yn 1— %a(tn — tn_l)yn
B (1 + %ah> B
g/ T
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shows these two limits are equal.

b Demonstrate that u obeys the perturbed differential equation

2a3(t — t,,)?

u/<t) = au(t) + 1-— %a(t —tp)]?

yn for t€ [ty tni1]

with initial condition wu(t,) = y,. Thus, prove that

CL3 h 6—7a7_2d7_
tna1) =M1+ — .
ultrr) = [* T <1—m/2>2]y

Solution: Differentiating by the quotient rule yields

= (1—La(t —t,))? yn

(- %a(cft —tn)2"

= au(t) + a{ = %a(lt o U(t)}

— au(t) + a{ = %a(lt T 1 . iig - Zi} '

= au(t) + a{ (1= §a(1t — )2 21_—(?& : z:;;z }yn

Therefore
ia?’(t —tn)?

(1— Za(t—t,))2""

which establishes the differential equation.
Now multiply by the integrating factor e~%* to obtain

v (t) = au(t) +

d La3(t —t,)?
—ult —at — —at 4 n -
e © U= Tat—tn))2’Y
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Integrating over the interval [¢,,,t] and using the fact that u(t,) = y, yields

t 1.3 2
za°(s —t,)ds
u(t)e—at . yne—atn — / e as 4 (1 n)
o (L=3a(s—tn))

2yn

or equivalently

1a3(s —t,)3ds

t
u(t) —y ea(t—tn) + eat/ e—as 4 Un.-
. tn (1—Fa(s —tn))2""
Substitute 7 = s — t,, as
t—t 1,32

n sa’tedr
u(t) _ ynea(t—tn) + ea(t—tn)/ e—aT _4 - ~Un

0 (1 - 3ar)

and finally take the limit ¢ — ¢,41 to obtain

a3 [P emoTr2dr
Yn+1 = u(tn-l-l) — eah [1 + Z / —] Yn -
o (

1— %a7)2
c Let e, =y, —y(t,) for n =0,1,.... Show that
ah |1 4 a3 /h e~ r2dr n a3 atnin /h e T r2dr
entl = € — —— e, + —e —_
+1 4 Jo (1-Ztar)? 4 o (1-3zar)?

In particular, deduce that a < 0 implies that the error propagates
subject to the inequality

h h
‘ ah ‘a|3 —aT 2 |CL‘3 atp41 —aT 2
ent1]| <e 1+—4 e “Tridr \en\—l——4 e e “Tredr.
0 0

Solution: Begin by finding the exact solution to
y' =ay  such that  y(0) =1.

Separation of variables and integrating yields

y(t) dy t
/ — = / adt or log yo — logy(t) = a(t — tg)-
Yo y to
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Plugging in tg = 0 and yp = 1 then results in
logy(t) = at or y(t) = e,

Note that

3 h _—at_-2

a e YTradr

Ent1 = Yns1 — Y(tn) = € [1 + —/ <—] Yy — tnt1
0

4 1— 2at)?
—aT 2d7’
=1 +—/ T Tarp )" —e"y(ty)
— 2a7)
—at 24 3 rh p—ar 24
_ eoh 2+_/ T en+eatn+la_/ o rdr
1——a7‘ 4 Jo (1-3ar)?

This is the equality that was to be shown.
Next, since a < 0 then 1 — %CLT > 1 and it follows that

h —ar__2 h
e T2dT
/ — T §/ e 2dr.
0 (1 - 50”) 0

Substituting this into the equation for e,,+; and estimating then yields

3 rh 3 rh
lensa| < e {2 + a 4‘ / e_aTTsz] e | + et %/ e T r3dr
0 0

which is the desired bound on how the error propagates.
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Exercise 1.4 Given 6 € [0, 1], find the order of the method

Ynt+1 = Yn + hf(tn + (1 - 0>ha eyn + (1 - e)yn—i-l)'

Solution: This appears to be a #-parametarized version of the implicit
midpoint rule considered earlier. As for that case set a = t,, + (1 — 0)h.
Begin by computing the truncation error

% = y<tn+1) - y(tn) - hf(tn + (1 - H)ha Hy(tn) + (1 - H)y(tvﬂ—l))
Noting t,,11 = a + 0h apply Taylor’s theorem as

212

2

Y(tns1) = y(a) + Ohy'(a) + ——" (a) + O(h?)

and for t, =a — (1 — 0)h as

(1 T 0)2h2 7

y(tn) = yla) = (1 = O)hy'(a) + ~——F——y"(a) + O(h?).

Therefore

(20 — 1)h?

Y(tns1) = y(t) = hy'(a) + ————y"(a) + O(1”).

The case 6 = % was considered in Exercise 1.1 where it was shown
the truncation error v, = O(h?®) and the order of the method was O(h?).
What’s left is the case when 6 # % In this case

Y(tnt1) = y(tn) = hy'(a) + O(R®).
Morever, since y'(a) = f(a,y(a)) we obtain
Yo = hf(a,y(a)) — hf(a,0y(t.) + (1 = O)y(tasr)) + O(R?).
The Lipshitz condition on f implies
[¥n| < hAly(a) = Oy(tn) + (1 = 0)y(tnr1))| + O(R?)
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and substituting the Taylor series for y(¢,,) and y(t,+1) yields
thn| < AA| = 0(1 — 0)hy/(a) + (1 — 0)0hy (a) + O(h?))| + O(h?)
< hA|O(R?)| 4+ O(R?) = O(h?).

Note it didn’t matter that the 3'(a) terms cancelled. Since v, = O(h?) we

conclude the method is order O(h) when 6 # 1.
Though not required for this exercise, we procede to show the method
is convergent. To this end note that

nt+1 = Yn+1 — Y(tn+1)
= Yn 4+ hf(tn + (1= 0)h, 0y + (1 — 0)yng1) — by,
—y(tn) = hf(tn + (1 = O)h, 0y(tn) + (1 = O)y(tns1)).
Consequently,

lent1l < len| +hX|0yn + (1 = O)yni1 — Oy(tn) — (1 — O)y(tny1)|
< (14 hX)|en| + hA(L — 0)|enyr| + O(h?)
and so
1+ h\O
ent1l = T3 =)
Now, assuming ey = 0, induction then results in
(=riem) —1

len] < L+hA0_ _ q
T—hA(1—6)

1—hA1-0)f, 1+h\ \n
= A {(1—h)\(1—9)) _1}Ch'

Take h small enough that hA(1 — 0) < 1/2 and estimate as

1+ hA hA =
<1 <1+2hA < :
—In1—0) = TT—maa—g - "=

len| + ch?.

ch?

Then . )
len| < X{e%”)‘ — 1}ch < Xe2(T_t0)>‘ch = O(h).

Since this estimate is independent of n it follows that
Enx = O(h) as h — oo.
This implies when 6 # % the method is convergent with order O(h).
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Exercise 1.5 Provided that f is analytic, it is possible to obtain from
y' = f(t,y) an expression for the second derivative of y, namely y" = g(¢,y),

where
of (t,y) N of(t,y)
dt dy

g(t,y) = f(t,y).

Find the orders of the methods

Yn+l = Yn + hf(tna yn) + %h2g(tn7 yn)

and
Yn+1 = 1h[f( ns yn) + f(tn—i-la yn—i—l)]

+ 12h2[ ( nayn) _g(tn+1>yn+1)]'

Solution: The truncation error for the first method is

¢ y(tn—I-l) y( ) hf( nayn) %h ( n;yn)
= y(tn) + hy'(tn) + 3h%Y" (tn) + O(R?)
- y( ) hf( nayn> - %h g(tnyyn)

= O(h?).

Therefore, the first method is O(h?).
The truncation error for the second method is

Un = y(tng1) = y(tn) — h[f(tn, y(tn)) + ftnt, y(tntr))]
- %hz[ (tn,y(tn)) — 9(tnt1, y(tns1))]
= Y(tns1) —y(tn) — %h[y/(tn) + 9 (tng1)]
- %hz [y (tn) — 4" (tns1)]

Taylor’s theorem yields

2 3

h h
Y(tns1) = y(tn) + hy'(tn) + 54" (t) + +4 (tn) + O(h")

h2
' (tns1) = ' (tn) + hy" (tn) + Sy (t) + O(R?)
Y (tns1) = ¥ (tn) + hy® (t,) + O(h?)

12
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consequently

2

h
wn = y(tn) + hy/(tn) + 7

- %h[y'(t ) (tn
. 1—12h2 [y/ ( ) y//
= O(h*).

h3 3
y//(tn> + Fy( )(tn) - y(tn)

)+ hy (ta) + 2 y® (t,)]
(tn) — hy® (tn)] + O(h*)

Therefore, the second method is O(h?).

Showing these methods are convergent requires finding a Lipshitz con-
dition for g. Such a condition follows from the fact that f was assumed
analytic but is beyond the scope of the course and this exercise.
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