
Homework 4 Math 467/667

Exercise 4.4 Determine all value of θ such that the theta method

yn+1 = yn + h[θf(tn, yn) + (1− θ)f(tn+1, yn+1)] (1.13)

for n = 0, 1, . . . is A-stable.

Solution: Given the ordinary differential equation

y′ = λy such that y(0) = 1

the theta method yields

yn+1 = yn + h[θλyn + (1− θ)λyn+1].

Therefore
(1− h(1− θ)λ)yn+1 = (1 + hθλ)yn

and consequently

yn+1 = r(hλ)yn where r(z) =
1 + θz

1− (1− θ)z
.

Now apply Lemma 4.3 from the text which reads as

Lemma 4.3 Let r be an arbitrary rational function that is not a constant.
Then |r(z)| < 1 for all z ∈ C− if and only if all the poles of r have positive
real parts and |r(it)| ≤ 1 for all t ∈ R.

When θ = 1 there are no poles; otherwise, θ ∈ [0, 1) in which case there is
a pole is at 1/(1− θ) which is real and clearly positive. It remains to check
whether |r(it)| ≤ 1 for all t ∈ R. Since

|1 + iθt|2 = 1 + θ2t2

|1− i(1− θ)t|2 = 1 + (1− θ)2t2,

we obtain that

|r(it)|2 =
1 + θ2t2

1 + (1− θ)2t2
.

The numerator is smaller or equal the denominator only when when θ ≤ 1/2.
It follows that the theta method is A-stable for θ ≤ 1/2.
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Note that it’s possible to explicitly calculate the linear stability domain
of the theta method. For example, the boundary of D = { z : |r(z)| < 1 }
may be determined by inverting r as a function of z and then letting r trace
out all values on the unit circle. Since

1 + θz = r(1− (1− θ)z)

1 + θz = r − r(1− θ)z

r(1− θ)z + θz = r − 1

implies

z =
r − 1

(1− θ)r + θ
.

Substituting r = eiα then yields

∂D =
{ eiα − 1

(1− θ)eiα + θ
: α ∈ [0, 2π]

}
.

We now use Julia to plot ∂D for θ = 0, 1
4 ,

1
2 ,

3
8 and 1. This is accom-

plished by the script

1 using Plots
2

3 z(r,theta)=(r-1)/((1-theta)r+theta)
4 alphas=0:pi/100:2*pi
5 rs=exp.(1im*alphas)
6 plot(z.(rs,0),label="theta=0",aspect_ratio=1.0,yrange=[-3,3])
7 plot!(z.(rs,1/4),label="theta=1/4")
8 plot!(z.(rs,1/2),label="theta=1/2")
9 plot!(z.(rs,3/8),label="theta=3/8")

10 plot!(z.(rs,1),label="theta=1")
11 savefig("plot1.pdf")

Note that yrange is set in the first plot command on line 6 to prevent the
vertical line which occurs when θ = 1

2 from stretching infinity. Also note
that when plot is passed an vector of complex numbers it automatically
plots them as real-imaginary pairs on the complex plane.
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The resulting graph is

The previous stability analysis is confirmed because the boundaries lie in
the right-half plane when θ ≤ 1/2.
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Exercise 4.5 Prove that for every ν-stage explicit Runge–Kutta method

ξ1 = yn,

ξ2 = yn + ha21f(tn, ξ1),

ξ3 = yn + ha31f(tn, ξ1) + ha32f(tn + c2h, ξ2),

...

ξν = yn + h

ν−1∑
i=1

aνif(tn + cih, ξi),

yn+1 = yn + h

ν∑
j=1

bjf(tn + cjh, ξj),

of order ν it is true that

r(z) =
ν∑

k=0

1

k!
zk for z ∈ C.

Solution: Recall Lemma 4.4 in the text which states

Lemma 4.4 Suppose the solution sequence yn for n = 0, 1, 2, . . . which is
produced by applying a method of order p to the linear equation y′ = λy with
y(0) = 1 with a constant step size obeys yn = [r(hλ)]n. Then necessarily

r(z) = ez +O(zp+1) as z → 0.

We know already for an explicit Runge–Kutta method that yn = [r(hλ)]n

for some polynomial r of degree ν. The above lemma implies that if the
method is of order ν then

r(z) = ez +O(zν+1) as z → 0.

Uniqueness of the Taylor polynomial implies r(z) must agree with the Taylor
series for ez up to degree ν which also happens to be the degree of r. The
desired result then follows.
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Exercise 4.6 Evaluate explicitly the function r for the following Runge–
Kutta methods:

a

0 0 0
2
3

1
3

1
3

1
4

3
4

, b

1
6

1
6 0

5
6

2
3

1
6

1
2

1
2

, c

0 0 0 0
1
2

1
4

1
4 0

1 0 1 0

1
6

2
3

1
6

.

Are these methods A-stable?

Solution: For a Runge–Kutta method

r(z) = 1 + zb · (I − zA)−11 for z ∈ C

where 1 = (1, . . . , 1) is the vector of length ν whose entries consist of ones.

Part a When

A =

[
0 0
1
3

1
3

]
and b =

[ 1
4
3
4

]
we obtain that

(I − zA)−1 =

[
1 0

− 1
3z 1− 1

3z

]−1

=
1

1− 1
3z

[
1− 1

3z 0
1
3z 1

]
.

Therefore

r(z) = 1 + z

[ 1
4
3
4

]
· 1

1− 1
3z

[
1− 1

3z
1
3z + 1

]
= 1 + z

1 + 1
6z

1− 1
3z

=
1 + 2

3z +
1
6z

2

1− 1
3z

.

To check if the method is A-stable first note there is a pole at 1/3 in the
right half plane. However, since

|r(it)|2 =
|1 + i 23 t−

1
6 t

2|2

|1− i 13 t|2
=

(1− 1
6 t

2)2 + 4
9 t

2

1 + 1
9 t

2

=
1 + 1

9 t
2 + 1

36 t
4

1 + 1
9 t

2
> 1 for t ̸= 0,

it follows that the method is not A-stable.
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Part b When

A =

[ 1
6 0
2
3

1
6

]
and b =

[ 1
2
1
2

]
we obtain that

(I − zA)−1 =

[
1− 1

6z 0
− 2

3z 1− 1
6z

]−1

=
1

1− 1
3z +

1
36z

2

[
1− 1

6z 0
2
3z 1− 1

6z

]
.

Therefore

r(z) = 1 + z

[ 1
2
1
2

]
· 1

1− 1
3z +

1
36z

2

[
1− 1

6z

1 + 1
2z

]
= 1 + z

1 + 1
6z

1− 1
3z +

1
36z

2
=

1 + 2
3z +

7
36z

2

1− 1
3z +

1
36z

2
.

To check if the method is A-stable first note there is a pole of multiplicity
two at 1/6 in the right half plane. However, since

|r(it)|2 =
|1 + i 23 t−

7
36 t

2|2

|1− i 13 t−
1
36 t

2|2
=

(1− 7
36 t

2)2 + 4
9 t

2

(1− 1
36 t

2)2 + 1
9 t

2

=
1 + 1

18 t
2 + 49

1296 t
4

1 + 1
18 t

2 + 1
1296 t

4
> 1 for t ̸= 0,

it again follows that the method is not A-stable.

Part c It’s possible to do this one using the same linear algebra framework
as before, but for variety we work from first principles. By definition

ξ1 = yn

ξ2 = yn + 1
4hλξ1 +

1
4hλξ2

ξ3 = yn + hλξ2.

Substituting z = hλ and solving yields

ξ2 = yn + 1
4zyn + 1

4zξ2 and therefore ξ2 =
1 + 1

4z

1− 1
4z

yn.
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Also

ξ3 = yn + z
1 + 1

4z

1− 1
4z

yn =
1 + 3

4z +
1
4z

2

1− 1
4z

yn.

Finally

yn+1 = yn + 1
6zyn + 2

3z
1 + 1

4z

1− 1
4z

yn + 1
6z

1 + 3
4z +

1
4z

2

1− 1
4z

yn = r(z)yn

where

r(z) = 1 + 1
6z +

2
3z

1 + 1
4z

1− 1
4z

+ 1
6z

1 + 3
4z +

1
4z

2

1− 1
4z

=
1 + 3

4z +
1
4z

2 + 1
24z

3

1− 1
4z

.

Since

|r(−6)| =
∣∣∣∣1− 9

2 + 9− 9

1 + 3
2

∣∣∣∣ = 7
5 > 1,

it follows that the method is not A-stable.
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Exercise 4.7 Prove that the Padé approximation r̂0/3 is not A-acceptable.

Solution: By definition the r̂0/3 Padé approximation is the rational func-
tion with constant numerator and denominator a polynomial of degree 3
that best approximates the exponential function. Formula for the numera-
tor and denominator are given in Theorem 4.5 in the text which reads

Theorem 4.5 Given any integers α, β ≥ 0, there exists a unique function

r̂α/β(z) =
p̂α/β(z)

q̂α/β(z)
with q̂α/β(0) = 1

of order α+ β. Here p̂α/β is a polynomial of degree at most α and q̂α/β is
a polynomial of degree at most β. The explicit forms of the numerator and
the denominator are respectively

p̂α/β(z) =
α∑

k=0

(
α

k

)
(α+ β − k)!

(α+ β)!
zk

and

q̂α/β(z) =

β∑
k=0

(
β

k

)
(α+ β − k)!

(α+ β)!
(−z)k.

Using these formula we compute

p̂0/3 =
0∑

k=0

(
0

k

)
(3− k)!

3!
zk = 1

and further that

q̂0/3(z) =
3∑

k=0

(
3

k

)
(3− k)!

3!
(−z)k = 1− z + 1

2z
2 − 1

6z
3.

Therefore

r̂0/3(z) =
1

1− z + 1
2z

2 − 1
6z

3
.

To see that r̂0/3 is not A-acceptable note that

|r(i)|2 =
1

|1− i− 1
2 + 1

6 i|2
=

1
1
4 + 25

36

= 18
17 > 1.
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