Exercise 4.4 Determine all value of θ such that the theta method

$$
\begin{equation*}
y_{n+1}=y_{n}+h\left[\theta f\left(t_{n}, y_{n}\right)+(1-\theta) f\left(t_{n+1}, y_{n+1}\right)\right] \tag{1.13}
\end{equation*}
$$

for $n=0,1, \ldots$ is A-stable.
Solution: Given the ordinary differential equation

$$
y^{\prime}=\lambda y \quad \text { such that } \quad y(0)=1
$$

the theta method yields

$$
y_{n+1}=y_{n}+h\left[\theta \lambda y_{n}+(1-\theta) \lambda y_{n+1}\right] .
$$

Therefore

$$
(1-h(1-\theta) \lambda) y_{n+1}=(1+h \theta \lambda) y_{n}
$$

and consequently

$$
y_{n+1}=r(h \lambda) y_{n} \quad \text { where } \quad r(z)=\frac{1+\theta z}{1-(1-\theta) z} .
$$

Now apply Lemma 4.3 from the text which reads as
Lemma 4.3 Let r be an arbitrary rational function that is not a constant. Then $|r(z)|<1$ for all $z \in \mathbf{C}^{-}$if and only if all the poles of r have positive real parts and $|r(i t)| \leq 1$ for all $t \in \mathbf{R}$.
When $\theta=1$ there are no poles; otherwise, $\theta \in[0,1)$ in which case there is a pole is at $1 /(1-\theta)$ which is real and clearly positive. It remains to check whether $|r(i t)| \leq 1$ for all $t \in \mathbf{R}$. Since

$$
\begin{aligned}
|1+i \theta t|^{2} & =1+\theta^{2} t^{2} \\
|1-i(1-\theta) t|^{2} & =1+(1-\theta)^{2} t^{2}
\end{aligned}
$$

we obtain that

$$
|r(i t)|^{2}=\frac{1+\theta^{2} t^{2}}{1+(1-\theta)^{2} t^{2}}
$$

The numerator is smaller or equal the denominator only when when $\theta \leq 1 / 2$. It follows that the theta method is A -stable for $\theta \leq 1 / 2$.

Note that it's possible to explicitly calculate the linear stability domain of the theta method. For example, the boundary of $\mathcal{D}=\{z:|r(z)|<1\}$ may be determined by inverting r as a function of z and then letting r trace out all values on the unit circle. Since

$$
\begin{aligned}
1+\theta z & =r(1-(1-\theta) z) \\
1+\theta z & =r-r(1-\theta) z \\
r(1-\theta) z+\theta z & =r-1
\end{aligned}
$$

implies

$$
z=\frac{r-1}{(1-\theta) r+\theta} .
$$

Substituting $r=e^{i \alpha}$ then yields

$$
\partial \mathcal{D}=\left\{\frac{e^{i \alpha}-1}{(1-\theta) e^{i \alpha}+\theta}: \alpha \in[0,2 \pi]\right\} .
$$

We now use Julia to plot $\partial \mathcal{D}$ for $\theta=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{8}$ and 1 . This is accomplished by the script

```
1 using Plots
2
3 z(r,theta)=(r-1)/((1-theta)r+theta)
4 alphas=0:pi/100:2*pi
rs=exp.(lim*alphas)
6 ~ p l o t ( z . ( r s , 0 ) , l a b e l = " t h e t a = 0 " , a s p e c t \_ r a t i o = 1 . 0 , y r a n g e = [ - 3 , 3 ] )
7 plot!(z.(rs,1/4),label="theta=1/4")
8 plot!(z.(rs,1/2),label="theta=1/2")
9 plot!(z.(rs,3/8),label="theta=3/8")
10 plot!(z.(rs,1),label="theta=1")
11 savefig("plot1.pdf")
```

Note that yrange is set in the first plot command on line 6 to prevent the vertical line which occurs when $\theta=\frac{1}{2}$ from stretching infinity. Also note that when plot is passed an vector of complex numbers it automatically plots them as real-imaginary pairs on the complex plane.

The resulting graph is

The previous stability analysis is confirmed because the boundaries lie in the right-half plane when $\theta \leq 1 / 2$.

Exercise 4.5 Prove that for every ν-stage explicit Runge-Kutta method

$$
\begin{aligned}
\xi_{1} & =y_{n}, \\
\xi_{2} & =y_{n}+h a_{21} f\left(t_{n}, \xi_{1}\right) \\
\xi_{3} & =y_{n}+h a_{31} f\left(t_{n}, \xi_{1}\right)+h a_{32} f\left(t_{n}+c_{2} h, \xi_{2}\right), \\
& \vdots \\
\xi_{\nu} & =y_{n}+h \sum_{i=1}^{\nu-1} a_{\nu i} f\left(t_{n}+c_{i} h, \xi_{i}\right), \\
y_{n+1} & =y_{n}+h \sum_{j=1}^{\nu} b_{j} f\left(t_{n}+c_{j} h, \xi_{j}\right),
\end{aligned}
$$

of order ν it is true that

$$
r(z)=\sum_{k=0}^{\nu} \frac{1}{k!} z^{k} \quad \text { for } \quad z \in \mathbf{C}
$$

Solution: Recall Lemma 4.4 in the text which states
Lemma 4.4 Suppose the solution sequence y_{n} for $n=0,1,2, \ldots$ which is produced by applying a method of order p to the linear equation $y^{\prime}=\lambda y$ with $y(0)=1$ with a constant step size obeys $y_{n}=[r(h \lambda)]^{n}$. Then necessarily

$$
r(z)=e^{z}+\mathcal{O}\left(z^{p+1}\right) \quad \text { as } \quad z \rightarrow 0
$$

We know already for an explicit Runge-Kutta method that $y_{n}=[r(h \lambda)]^{n}$ for some polynomial r of degree ν. The above lemma implies that if the method is of order ν then

$$
r(z)=e^{z}+\mathcal{O}\left(z^{\nu+1}\right) \quad \text { as } \quad z \rightarrow 0 .
$$

Uniqueness of the Taylor polynomial implies $r(z)$ must agree with the Taylor series for e^{z} up to degree ν which also happens to be the degree of r. The desired result then follows.

Exercise 4.6 Evaluate explicitly the function r for the following RungeKutta methods:

Are these methods A-stable?
Solution: For a Runge-Kutta method

$$
r(z)=1+z b \cdot(I-z A)^{-1} \mathbf{1} \quad \text { for } \quad z \in \mathbf{C}
$$

where $\mathbf{1}=(1, \ldots, 1)$ is the vector of length ν whose entries consist of ones.
Part a When

$$
A=\left[\begin{array}{cc}
0 & 0 \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
\frac{1}{4} \\
\frac{3}{4}
\end{array}\right]
$$

we obtain that

$$
(I-z A)^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{3} z & 1-\frac{1}{3} z
\end{array}\right]^{-1}=\frac{1}{1-\frac{1}{3} z}\left[\begin{array}{cc}
1-\frac{1}{3} z & 0 \\
\frac{1}{3} z & 1
\end{array}\right] .
$$

Therefore

$$
r(z)=1+z\left[\begin{array}{c}
\frac{1}{4} \\
\frac{3}{4}
\end{array}\right] \cdot \frac{1}{1-\frac{1}{3} z}\left[\begin{array}{c}
1-\frac{1}{3} z \\
\frac{1}{3} z+1
\end{array}\right]=1+z \frac{1+\frac{1}{6} z}{1-\frac{1}{3} z}=\frac{1+\frac{2}{3} z+\frac{1}{6} z^{2}}{1-\frac{1}{3} z}
$$

To check if the method is A-stable first note there is a pole at $1 / 3$ in the right half plane. However, since

$$
\begin{aligned}
|r(i t)|^{2} & =\frac{\left|1+i \frac{2}{3} t-\frac{1}{6} t^{2}\right|^{2}}{\left|1-i \frac{1}{3} t\right|^{2}}=\frac{\left(1-\frac{1}{6} t^{2}\right)^{2}+\frac{4}{9} t^{2}}{1+\frac{1}{9} t^{2}} \\
& =\frac{1+\frac{1}{9} t^{2}+\frac{1}{36} t^{4}}{1+\frac{1}{9} t^{2}}>1 \quad \text { for } \quad t \neq 0
\end{aligned}
$$

it follows that the method is not A-stable.

Part b When

$$
A=\left[\begin{array}{cc}
\frac{1}{6} & 0 \\
\frac{2}{3} & \frac{1}{6}
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
$$

we obtain that

$$
(I-z A)^{-1}=\left[\begin{array}{cc}
1-\frac{1}{6} z & 0 \\
-\frac{2}{3} z & 1-\frac{1}{6} z
\end{array}\right]^{-1}=\frac{1}{1-\frac{1}{3} z+\frac{1}{36} z^{2}}\left[\begin{array}{cc}
1-\frac{1}{6} z & 0 \\
\frac{2}{3} z & 1-\frac{1}{6} z
\end{array}\right] .
$$

Therefore

$$
\begin{aligned}
r(z) & =1+z\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \cdot \frac{1}{1-\frac{1}{3} z+\frac{1}{36} z^{2}}\left[\begin{array}{l}
1-\frac{1}{6} z \\
1+\frac{1}{2} z
\end{array}\right] \\
& =1+z \frac{1+\frac{1}{6} z}{1-\frac{1}{3} z+\frac{1}{36} z^{2}}=\frac{1+\frac{2}{3} z+\frac{7}{36} z^{2}}{1-\frac{1}{3} z+\frac{1}{36} z^{2}} .
\end{aligned}
$$

To check if the method is A-stable first note there is a pole of multiplicity two at $1 / 6$ in the right half plane. However, since

$$
\begin{aligned}
|r(i t)|^{2} & =\frac{\left|1+i \frac{2}{3} t-\frac{7}{36} t^{2}\right|^{2}}{\left|1-i \frac{1}{3} t-\frac{1}{36} t^{2}\right|^{2}}=\frac{\left(1-\frac{7}{36} t^{2}\right)^{2}+\frac{4}{9} t^{2}}{\left(1-\frac{1}{36} t^{2}\right)^{2}+\frac{1}{9} t^{2}} \\
& =\frac{1+\frac{1}{18} t^{2}+\frac{49}{1296} t^{4}}{1+\frac{1}{18} t^{2}+\frac{1}{1296} t^{4}}>1 \quad \text { for } \quad t \neq 0
\end{aligned}
$$

it again follows that the method is not A-stable.
Part c It's possible to do this one using the same linear algebra framework as before, but for variety we work from first principles. By definition

$$
\begin{aligned}
& \xi_{1}=y_{n} \\
& \xi_{2}=y_{n}+\frac{1}{4} h \lambda \xi_{1}+\frac{1}{4} h \lambda \xi_{2} \\
& \xi_{3}=y_{n}+h \lambda \xi_{2} .
\end{aligned}
$$

Substituting $z=h \lambda$ and solving yields

$$
\xi_{2}=y_{n}+\frac{1}{4} z y_{n}+\frac{1}{4} z \xi_{2} \quad \text { and therefore } \quad \xi_{2}=\frac{1+\frac{1}{4} z}{1-\frac{1}{4} z} y_{n}
$$

Also

$$
\xi_{3}=y_{n}+z \frac{1+\frac{1}{4} z}{1-\frac{1}{4} z} y_{n}=\frac{1+\frac{3}{4} z+\frac{1}{4} z^{2}}{1-\frac{1}{4} z} y_{n} .
$$

Finally

$$
y_{n+1}=y_{n}+\frac{1}{6} z y_{n}+\frac{2}{3} z \frac{1+\frac{1}{4} z}{1-\frac{1}{4} z} y_{n}+\frac{1}{6} z \frac{1+\frac{3}{4} z+\frac{1}{4} z^{2}}{1-\frac{1}{4} z} y_{n}=r(z) y_{n}
$$

where

$$
r(z)=1+\frac{1}{6} z+\frac{2}{3} z \frac{1+\frac{1}{4} z}{1-\frac{1}{4} z}+\frac{1}{6} z \frac{1+\frac{3}{4} z+\frac{1}{4} z^{2}}{1-\frac{1}{4} z}=\frac{1+\frac{3}{4} z+\frac{1}{4} z^{2}+\frac{1}{24} z^{3}}{1-\frac{1}{4} z} .
$$

Since

$$
|r(-6)|=\left|\frac{1-\frac{9}{2}+9-9}{1+\frac{3}{2}}\right|=\frac{7}{5}>1
$$

it follows that the method is not A-stable.

Exercise 4.7 Prove that the Padé approximation $\hat{r}_{0 / 3}$ is not A-acceptable.
Solution: By definition the $\hat{r}_{0 / 3}$ Padé approximation is the rational function with constant numerator and denominator a polynomial of degree 3 that best approximates the exponential function. Formula for the numerator and denominator are given in Theorem 4.5 in the text which reads

Theorem 4.5 Given any integers $\alpha, \beta \geq 0$, there exists a unique function

$$
\hat{r}_{\alpha / \beta}(z)=\frac{\hat{p}_{\alpha / \beta}(z)}{\hat{q}_{\alpha / \beta}(z)} \quad \text { with } \quad \hat{q}_{\alpha / \beta}(0)=1
$$

of order $\alpha+\beta$. Here $\hat{p}_{\alpha / \beta}$ is a polynomial of degree at most α and $\hat{q}_{\alpha / \beta}$ is a polynomial of degree at most β. The explicit forms of the numerator and the denominator are respectively

$$
\hat{p}_{\alpha / \beta}(z)=\sum_{k=0}^{\alpha}\binom{\alpha}{k} \frac{(\alpha+\beta-k)!}{(\alpha+\beta)!} z^{k}
$$

and

$$
\hat{q}_{\alpha / \beta}(z)=\sum_{k=0}^{\beta}\binom{\beta}{k} \frac{(\alpha+\beta-k)!}{(\alpha+\beta)!}(-z)^{k} .
$$

Using these formula we compute

$$
\hat{p}_{0 / 3}=\sum_{k=0}^{0}\binom{0}{k} \frac{(3-k)!}{3!} z^{k}=1
$$

and further that

$$
\hat{q}_{0 / 3}(z)=\sum_{k=0}^{3}\binom{3}{k} \frac{(3-k)!}{3!}(-z)^{k}=1-z+\frac{1}{2} z^{2}-\frac{1}{6} z^{3} .
$$

Therefore

$$
\hat{r}_{0 / 3}(z)=\frac{1}{1-z+\frac{1}{2} z^{2}-\frac{1}{6} z^{3}} .
$$

To see that $\hat{r}_{0 / 3}$ is not A-acceptable note that

$$
|r(i)|^{2}=\frac{1}{\left|1-i-\frac{1}{2}+\frac{1}{6} i\right|^{2}}=\frac{1}{\frac{1}{4}+\frac{25}{36}}=\frac{18}{17}>1 .
$$

