
Computer Lab 01 Euler’s Method

The computer labs provide computational experience related to the ana-
lytic theory presented in the lectures. The main tool for these exercises is a
programming language called Julia designed for the implementation of nu-
merical algorithms that combines the compiled efficiency of C and Fortran
with the interactive and notational convenience of Matlab and Python.

In science and engineering an important goal is to become a skilled
practitioner by doing it yourself. To this end the computers in the lab have
been provisioned with a Linux programming environment similar to what
is deployed on the university high-performance cluster, all other supercom-
puters worldwide and for most cloud computing. To access Linux please
restart the computer using the usb network boot key for this class.

Rather than using the lab equipment it is also possible to freely install
Julia on your personal laptop. While using your own computer goes along
well with doing it yourself, I will unfortunately be unable to help with any
technical problems that might crop up in that case. Even so, I’d recommend
trying to install Julia at home, if only to avoid coming in after hours to
complete the homework. You may also use your laptop in the lab.

Note that it is possible to forgo Julia and perform all your computations
using a different programming language. Although I would be happy to
grade assignments completed using such alternatives, my opinion is Julia
makes numerical methods much easier than a general-purpose programming
language. I am also able to provide more help with Julia.

Symbolic Techniques

Our lab exercises start with solving an ode ordinary differential equation.
Suppose we seek to find y(t) such that

y′ + 3y = sin t and y(0) = 7.

Cauchy’s variation of parameters, in this case also known as the integrating
factor method, tells us to multiply by µ(t) = exp(3t) to obtain

(µy)′ = µy′ + µ′y = µ sin t.

Integrating both sides over [0, t] as∫ t

0

(µ(s)y(s))′ds =

∫ t

0

µ(s) sin s ds

1

Computer Lab 01 Euler’s Method

then yields

µ(t)y(t)− µ(0)y(0) =

∫ t

0

µ(s) sin(s)ds

or that

y(t) = exp(−3t)

{
7 +

∫ t

0

exp(3s) sin(s)ds

}
.

The integral on the right may be solved using integration by parts, a
complex line integral or a cas computer algebra system. Although the cas
built into Julia is not as advanced as programs such as Maple or Mathemat-
ica, this drawback is outweighed by the fact that the numerical performance
of Julia is far superior. Since most of our work will be of a numeric nature,
it is convenient to also do the algebra with Julia. To this end, create a
working directory, change to that directory, start Julia and then load the
Symbolics and SymbolicNumericIntegration packages.

$ mkdir lab01
$ cd lab01
$ julia

_
_ _ _(_)_ | Documentation: https://docs.julialang.org
(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 1.6.7 (2022-07-19)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release
|__/ |

julia> using Symbolics, SymbolicNumericIntegration

Note that these packages have been preinstalled on the lab computers
to save time and storage space. If you are using your own personal computer
or notebook you will have to download the packages yourself.

After the package is loaded, you may then solve the ode analytically
by entering the following sequence of commands:

julia> @variables s

2

Computer Lab 01 Euler’s Method

1-element Vector{Num}:
s

julia> mu(t)=exp(3*t)
mu (generic function with 1 method)

julia> I1=integrate(mu(s)*sin(s))[1]
(3//10)*sin(s)*exp(3s) - (1//10)*cos(s)*exp(3s)

julia> F1=eval(build_function(I1,s))
#11 (generic function with 1 method)

julia> y(t)=exp(-3*t)*(7+F1(t)-F1(0))
y (generic function with 1 method)

julia> y(s)
(7.1 + (3//10)*sin(s)*exp(3s) - (1//10)*cos(s)*exp(3s))*exp(-3s)

Euler’s Method

As not all ordinary differential equations are solvable using exact symbolic
techniques, this course focuses on numeric approximations. Recall the sim-
ple scheme to approximate y(t) on the interval [t0, T] given by

yn+1 = yn + hf(tn, yn) where tn = t0 + hn and h = (T − t0)/N.

Here N species how many subintervals in which to divide [t0, T] when per-
forming the approximation and h is the length of those subintervals.

Theoretically, we know that yn approximates y(tn) to order O(h). This
means there is a constant c such that the total error

EN = max
{
∥yn − y(tn)∥ : n = 0, . . . , N

}
≤ ch as h → 0.

The goal in this lab is to compute the approximations yn for different values
of N and verify the rate of convergence. Along the way, we shall also
estimate the value of c for the specific ode under consideration.

3

Computer Lab 01 Euler’s Method

Computing Techniques

We used Julia as an interactive calculator when solving the ode using sym-
bolic techniques. One of the advantages of the just-in-time compilation
behind the repl read-evaluate-print loop is that it’s also possible to ex-
plore numeric algorithms interactively. Once a suitable algorithm has been
developed, one can then store the needed sequence of commands in a file.
That file is a called a program and contains what is referred to as code.

In the practice of scientific computing, once a program is finished it is
typically uploaded to a supercomputer or computing cluster and used solve
larger problems. In this class the program will be uploaded for grading
along with a copy of the output when solving a smaller problem.

The stages of experimentation, development and finally running large-
scale numeric simulations often involves the further task of translating code
from one programming language to another as well as optimizing that code
for use on a parallel machine. For example, one might experiment using
Matlab or Python and only later convert that code (or parts of that code)
to C or Fortran. Although this may seem like too much advertising, I
find it revolutionary that desktop computers now have the power to host
interactive environments such as Julia with just-in-time compiled efficiency
that scales to real-world problem sizes.

As we begin implementing Euler’s method in Julia, it should be empha-
sized that no matter how powerful our software tools, the main advantage
of Euler’s method is simplicity not numerical efficiency. In particular, the
low-order O(h) convergence (as well as poor stability properties) makes
Euler’s method unsuitable for many problems.

At this point the Julia repl that was used to find the exact solution
of the ode should already be running in one window on the desktop. Inter-
active computing is great for experimentation and visualization, but not so
much when performing a sequence of long-running numerical calculations.

Since we shall be writing a program, open an editor window with an ap-
plication such as gedit or pluma. On the lab computers this can be done by
first creating another terminal window and then typing cd lab01 followed
by gedit euler.jl & at the prompt. Note carefully the & typed at the end
of the gedit command above. This is necessary so the terminal window will
continue to accept commands while the editor is running.

Not typing the & can lead to confusion. If this happens close the editor
window and try again. The relevant windows on the screen might look like

4

Computer Lab 01 Euler’s Method

We shall switch back and forth between the editor and the repl while
writing our program. Many Linux window managers—including the one in
the lab—make extensive use of mouse click or drag operations performed
while pressing the ⟨alt⟩ key. As the resulting user interface is slightly dif-
ferent than Microsoft or Apple, here are a few hints to get started:

• The keyboard types into the window containing the mouse pointer
whether that window is on top or not.

• To raise a window hold the ⟨alt⟩ key and then left click with the mouse
anywhere in the window you want to raise.

• To lower a window hold the ⟨alt⟩ key and then right click with the
mouse anywhere in the window you want to raise.

• To move a window hold the ⟨alt⟩ key and drag with either the right or
left mouse button anywhere in the window you want to move.

Note there are many window-manager choices on Linux. Not all work the
same, many are customizable and some are specially intended to be more
similar to either Microsoft or Apple.

5

Computer Lab 01 Euler’s Method

A Numerical Approximation

Our numerical work begins by identifying the function f(t, y) in the differ-
ential equation

y′ + 3y = sin t

previously solved symbolically. Since y′ = f(t, y) subtracting 3y from both
sides yields that

f(t, y) = sin t− 3y.

The Julia commands to define such a function are

f(t,y)=sin(t)-3*y

Enter this line the editor along with the definition of the exact solution
found earlier and the initial condition. Save the file using ⟨ctrl⟩-S or the
mouse menu. The editor window should now look like

A star before the name euler.jl means means you haven’t saved the file.
Make sure to save the file each time before loading it into Julia.

Now, switch to Julia and type include("euler.jl") in the repl. If all
goes well, the output should look like

julia> include("euler.jl")
7

Note the 7 which is returned represents the result of the final line y0=7 in
the program. The print, println and display functions can be used to
output intermediate results while the program is running.

6

Computer Lab 01 Euler’s Method

Let’s use eight steps of Euler’s method to approximate the solution y(t)
on the interval [0, 1]. After defining T, N and h, create two array tn and yn
to hold the results of the calculation. Initialize the arrays and then make a
loop to compute tn and yn. The code in the editor should now look like

1 f(t,y)=sin(t)-3*y
2 y(s)=(7.1+(3//10)*sin(s)*exp(3s)-
3 (1//10)*cos(s)*exp(3s))*exp(-3s)
4 t0=0
5 y0=7
6

7 T=1
8 N=8
9 h=(T-t0)/N

10 tn=zeros(N+1)
11 yn=zeros(N+1)
12

13 yn[1]=y0
14 tn[1]=t0
15 for n=1:N
16 tn[n+1]=t0+h*n
17 yn[n+1]=yn[n]+h*f(tn[n],yn[n])
18 end

Run the new code by typing include("euler.jl") in the repl. If there
are errors, first check that the file in the editor has been saved. After this,
it may help to cut and paste lines from the editor into the reply using the
mouse to debug them. Cut and paste is a bit weird.

• In the terminal use ⟨crtl⟩-⟨shift⟩-c to copy and ⟨crtl⟩-⟨shift⟩-v to paste.

• In the editor ⟨crtl⟩-c to copy and ⟨crtl⟩-v to paste.

The inconsistency is because ⟨ctrl⟩-c traditionally means stop the running
program in the terminal window and still does.

Now, suppose the program had a typo so line 10 read as tn=zerops(N+1)
instead. The result in the repl would be a stack trace that looks like

julia> include("euler.jl")

7

Computer Lab 01 Euler’s Method

ERROR: LoadError: UndefVarError: zerops not defined
Stacktrace:
[1] top-level scope

@ ~/teach/467/2023/lab01/euler.jl:10
[2] include(fname::String)

@ Base.MainInclude ./client.jl:444
[3] top-level scope

@ REPL[42]:1
in expression starting at /home/ejolson/teach/467/2
023/lab01/euler.jl:10

That’s a lot of output for a single-character typo; however, upon closer
inspection the message clearly indicates what’s wrong. Because of the mis-
spelling zerops is not defined. There is no such function. The top level of
the stack trace indicates the error occurred in on line 10 in euler.jl and
indeed that is where we put the typo in this example.

At this point it is useful to visualize the solution and its approximation.
This can be done interactively using the Plots package. To obtain

enter the following into the repl:

julia> using Plots

julia> ts=0:0.01:1

8

Computer Lab 01 Euler’s Method

0.0:0.01:1.0

julia> plot(ts,y.(ts),label="exact")

julia> scatter!(tn,yn,label="Euler")

Note that ts is an iterator that is used for plotting the exact solution.
The graph can be saved to a pdf by typing savefig("approx.pdf") that is
suitable for inclusion in word-processing documents as well as uploading as
part of the work for this lab. The output should look like

julia> savefig("approx.pdf")

and the graph displayed on the screen will disappear.
That completes the first half of this lab project. To finish we now verify

the order of convergence and estimate the value of c appearing in the error
bound numerically.

Study of Convergence

So far we’ve computed an approximation of the differential equation using
eight time steps and visually compared that approximation to the exact
solution. Next add an additional loop to compute the error EN for different
values of N and then estimate the value of c such that EN ≤ ch.

After some changes we arrive at

1 f(t,y)=sin(t)-3*y
2 y(s)=(7.1+(3//10)*sin(s)*exp(3s)-
3 (1//10)*cos(s)*exp(3s))*exp(-3s)
4 t0=0
5 y0=7
6

7 T=1
8 J=10
9 EN=zeros(J)

10 HN=zeros(J)
11 for j=1:J

9

Computer Lab 01 Euler’s Method

12 N=2^(j+2)
13 h=(T-t0)/N
14 tn=zeros(N+1)
15 yn=zeros(N+1)
16

17 yn[1]=y0
18 tn[1]=t0
19 for n=1:N
20 tn[n+1]=t0+h*n
21 yn[n+1]=yn[n]+h*f(tn[n],yn[n])
22 end
23 HN[j]=h
24 EN[j]=maximum(abs.(yn-y.(tn)))
25 end
26

27 scatter(HN,EN,scale=:log10,
28 legend=:topleft,label="EN")
29 plot!(HN,4*HN,label="4*h")

Note the additional loop starting at line 11 along with the computation
of the error in line 24. The error EN versus h is automatically plotted in
lines 27 and 29 using a logarithmic scale. This is because we have taken N
to be powers of 2 in order to cover a wide range of step sizes. Now type
savefig("error.pdf") in the repl to save the error graph.

The value of c was found to be 4 using guess and check. A better way
would be to perform a least squares fit. Feel free to solve for c using least
squares for extra credit. If you decide to do this, please upload your extra
credit work under lab01ec on the course management system.

Submitting Your Work

Three things should be uploaded for grading:

• A pdf listing of final computer program.

• The graph approx.pdf of the approximation.

• The graph error.pdf for the error analysis.

10

Computer Lab 01 Euler’s Method

The files approx.pdf and error.pdf have already been created and should
be in the lab01 subdirectory. The only thing left is to convert euler.jl into
a pdf file for upload. In the lab the command

j2pdf -o euler.pdf euler.jl

may be used to produce a file euler.pdf suitable for uploading.
On Microsoft suitable files for upload can be generated by printing

quadratic.jl and quadratic.out to pdf from within Notepad. For example,
if code01.pdf corresponds to the printout of quadratic.jl and run01.pdf
to quadratic.out, then upload both code01.pdf and run01.pdf for grading.
A similar technique will work for Apple.

Subsequent lab assignments will require more independent work but
follow a similar sequence of steps to produce files suitable for upload that
can be viewed and annotated by the grader.

Before leaving don’t forget to close the applications open on your desk-
top and logout. Exit the Julia repl by typing ⟨ctrl⟩-d and then ⟨ctrl⟩-d
again to close the terminal. The editor has a menu at the top. If using one
of the lab computers, please reboot it into Microsoft Windows.

11

f(t,y)=sin(t)-3*y
y(s)=(7.1+(3//10)*sin(s)*exp(3s)-
 (1//10)*cos(s)*exp(3s))*exp(-3s)
t0=0
y0=7

T=1
J=10
EN=zeros(J)
HN=zeros(J)
for j=1:J
	N=2^(j+2)
	h=(T-t0)/N
	tn=zeros(N+1)
	yn=zeros(N+1)

	yn[1]=y0
	tn[1]=t0
	for n=1:N
		tn[n+1]=t0+h*n
		yn[n+1]=yn[n]+h*f(tn[n],yn[n])
	end
 HN[j]=h
	EN[j]=maximum(abs.(yn-y.(tn)))
end

scatter(HN,EN,scale=:log10,
 legend=:topleft,label="EN")
plot!(HN,4*HN,label="4*h")

